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Abstract: We use recurrences (alias difference equations) to prove the longstanding conjecture that
the two most important permutation statistics, namely the number of inversions and the major
index, are asymptotically joint-independently-normal. We even derive more-precise-than-needed
asymptotic formulas for the (normalized) mixed moments.

Human Statistics

Human statistics are numerical attributes defined on humans, for example, longevity, height, weight,
IQ, and it is well-known, at least empirically, that these are, each separately, asymptotically normal,
which means that if you draw a histogram with the statistical data, it would look like a bell-curve. It
is also true that they are usually joint-asymptotically-normal, but usually not independently so. But
if you compute empirically the correlation matrix, you would get, asymptotically (i.e. for “large”
populations) that they are close to being distributed according to a multivariate (generalized)
Gaussian exp(−Q(x1, x2, ...)) with Q(x1, x2, . . .) a certain quadratic form that can be deduced
from the correlation matrix.

Permutation Statistics

Let our population be the set of permutations of {1, 2, . . . , n}. They too, can be assigned numer-
ical attributes, and the great classical combinatorialist, Dominique Foata, (who got his 3rd-cycle
doctorate in statistics!) coined the term permutation statistics for them.

The most important permutation statistic is the number of inversions, inv(π), that counts the
number of pairs 1 ≤ i < j ≤ n such that πi > πj (and ranges from 0 to n(n− 1)/2). For example,
inv(314625) = 5, corresponding to the set of pairs {(1, 2), (1, 5), (3, 5), (4, 5), (4, 6)}. It features
in the definition of the determinant, and Netto proved that their probability generating function
(the polynomial in q such that its coefficient of qi is the probability that a uniformly-at-random
n-permutation has i inversions) is given by

(1)(1 + q)(1 + q + q2) · · · (1 + q + q2 + . . .+ qn−1)
n!

=
∏n
i=1(1− qi)
n!(1− q)n

.

The second most important permutation statistic is the major index, maj(π), that is the sum of
the places i, where πi > πi+1 For example, maj(314625) = 1 + 4 = 5, because at i = 1 and i = 4
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we have descents. Major Percy Alexander MacMahon[M] famously proved that the probability
generating function for the major index is also given by that very same formula. In other words
the permutation statistics inv and maj are equidistributed. Dominique Foata[Fo] gave a seminal
lovely bijective proof that proved the stronger statement that inv and maj are equidistributed also
when restricted to permutations ending with a given integer.

William Feller ([Fe], p.257) proved that the number of inversions (and hence also the major index)
is asymptotically normal in the following sense. Feller easily computed the expectation,

E[inv] = mn = n(n− 1)/4 ,

and the variance,

(σn)2 =
2n3 + 3n2 − 5n

72
.

If we denote by Zn the centralized and normalized random variable

Zn =
inv −mn

σn
,

then Zn → N in distribution as n → ∞, where N is the Gaussian distribution whose probability
density function is e−x

2/2/
√

2π.

A computer-generated proof, which gives much more detail regarding the precise asymptotics, can be
obtained using Zeilberger’s Maple package http://www.math.rutgers.edu/~zeilberg/tokhniot/AsymptoticMoments
that accompanies the article [Z].

Hence both inv and maj are individually asymptotically normal, but what about their interaction,
in other words, what can you say about the limit of

1
da db

Pr(σna ≤ inv(π)−mn ≤ σn(a+ da) AND σnb ≤ maj(π)−mn ≤ σn(b+ db) ) ,

as n→∞ and da, db→ 0?

In this article, we prove that this limit exists and equals (2π)−1e−a
2/2−b2/2. In other words, inv

and maj are asymptotically joint-independently-normal.

A Brief History

It all started when the great Swedish probabilist Svante Janson (member of the Swedish Academy of
Science, that awards the Nobel prizes) asked Donald Knuth (one of the greatest computer scientists
of all time, winner of the Turing and Kyoto prizes, among many other honors) about the asymptotic
covariance of inv and maj. Neither of these luminaries knew the answer, so Don Knuth asked one
of us (DZ). DZ didn’t know the answer either, so he asked his beloved servant, Shalosh B. Ekhad,
who immediately ([E]) produced, not just the asymptotics, but the exact answer!. It turned out to

be n(n−1)/8. In particular, the correlation, Cov(inv,maj)/σ2
n =

n(n−1)
8

2n3+3n2−5n
72

= 9
2n +O(1/n2) tends

to zero as n goes to infinity. It followed that for large n, inv and maj are practically uncorrelated.
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But there are lots of pairs of random variables that are uncorrelated yet not independent. A
convenient way to prove that Xn := (inv −mn)/σn and Yn := (maj −mn)/σn are asymptotically
independent (we already know that they are both normal) is to use the method of moments, and
to prove that the mixed moments

Mr,s(n) := E[(Xn)r(Yn)s] ,

tend to the mixed moments of N ×N as n→∞. In other words, for r, s ≥ 1:

lim
n→∞

M2r,2s(n) =
(2r)!
2rr!

(2s)!
2ss!

, (EE)

lim
n→∞

M2r−1,2s(n) = 0 , (OE)

lim
n→∞

M2r,2s−1(n) = 0 , (EO)

lim
n→∞

M2r−1,2s−1(n) = 0 . (OO)

Ekhad’s brilliant approach to the Janson-Knuth question merely settled the case r = 1, s = 1 of
(OO). Of course, because of symmetry (OE) and (EO) are trivially true (before taking the limits!,
i.e. M2r,2s−1(n) ≡ 0 and M2r−1,2s(n) ≡ 0).

One natural approach would be to extend Ekhad’s brilliant answer for M1,1(n) to the general case,
and try to derive closed-form expressions for Mr,s(n) for larger r and s. Since Ekhad’s proof is so
brief, we can cite it here in full.

“Svante Janson asked Don Knuth, who asked me, about the covariance of inv and maj. The
answer is

(
n
2

)
/4. To prove it, I asked Shalosh to compute the average of the quantity (inv(π) −

E(inv))(maj(π) − E(maj)) over all permutations of a given length n, and it gave me, for n =
1, 2, 3, 4, 5, the values 0, 1/4, 3/4, 3/2, 5/2, respectively. Since we know a priori2 that this is a
polynomial of degree ≤ 4, this must be it! ”.

Obviously this brute-brute-force approach would be hopeless for deriving polynomial expressions
for the moments Mr,s(n) for larger r and s. As we will soon see, the degree of the polynomial
M2r,2s(n) is 3(r + s), so for example, in order to (rigorously) guess M10,10(n), we would need 31
data points, requiring the computer to examine more than 31! > 0.822 · 1034 permutations.

It is perhaps surprising, then, that an inspired, “empirical” (yet fully rigorous), “brute-force”
approach does indeed work. The first step is to have a more efficient way to compute the moments
Mr,s(n), for specific n and specific r and s. We will do this by first designing an efficient way
to generate the probability generating function, let’s call it G(n)(p, q), for the pair of statistics
(inv,maj). Above we see Netto’s beautiful closed-form expressions for G(n)(1, q) and G(n)(p, 1),

2 This is the old trick to compute moments of combinatorial ‘statistics’, described nicely [GKP], section 8.2, by

changing the order of summation. It applies equally well to covariance. Rather than actually carrying out the gory

details, we observe that this is always a polynomial whose degree is trivial to bound.
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but no such closed-form expression seems to exist for the bi-variate generating function, so the best
that we can hope for is to find a recurrence scheme.

A Combinatorial Interlude

Setting aside probability for a few moments, and we focus on a fast algorithm for computing

H(n)(p, q) :=
∑
π∈Sn

pinv(π)qmaj(π) ,

for n up to, say, 50.

Define the weight of a permutation π to be pinv(π)qmaj(π). Suppose that π ∈ Sn ends with i, so we
can write π = π′i, where π′ is a permutation of {1, . . . , i− 1, i+ 1, . . . n}.

When you chop-off i from π you always lose n− i inversions (that is, π′ has n− i fewer inversions
than π). The major index, however, decreases by n−1 if the last letter of π′, let’s call it j, is larger
than i, and if j < i the major index does not decrease at all. So writing π = π′′ji, we have

inv(π′′ji) = inv(π′′j) + n− i ,

maj(π′′ji) =
{
maj(π′′j), if j < i ;
maj(π′′j) + n− 1, if j > i.

Combining, we have

weight(π′′ji) =
{
pn−iweight(π′′j), if j < i ;
pn−iqn−1weight(π′′j), if j > i.

So in order to compute H(n)(p, q), we need to introduce the more general weight-enumerators of
those permutations in Sn that end with an i. Let’s call these F (n, i)(p, q). In symbols:

F (n, i)(p, q) :=
∑
π∈Sn
πn=i

pinv(π)qmaj(π) .

It follows that (let’s omit the arguments (p, q) from now on):

F (n, i) = pn−i
i−1∑
j=1

F (n− 1, j) + pn−iqn−1
n−1∑
j=i

F (n− 1, j) . (Fni)

Note that when we chop off the last entry, i, from π = π′′ji, we see π′′j is a permutation of
{1, . . . , i− 1, i+ 1, n}. We then “reduce” π′′j to a permutation of {1, . . . , n− 1} by reducing all the
entries larger than i by 1, and so the summation ranges from j = i to j = n− 1 rather than from
j = i+ 1 to j = n.

Replacing i by i+ 1 in the above equation, we have:

F (n, i+ 1) = pn−i−1
i∑

j=1

F (n− 1, j) + pn−i−1qn−1
n−1∑
j=i+1

F (n− 1, j) .
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Subtracting the former equation from p times the latter we get

F (n, i)− pF (n, i+ 1) =

pn−i
i−1∑
j=1

F (n− 1, j) + pn−iqn−1
n−1∑
j=i

F (n− 1, j)

−pn−i
i∑

j=1

F (n− 1, j)− pn−iqn−1
n−1∑
j=i+1

F (n− 1, j)

= pn−i

 i−1∑
j=1

F (n− 1, j)−
i∑

j=1

F (n− 1, j)

+ pn−iqn−1

 n−1∑
j=i

F (n− 1, j)−
n−1∑
j=i+1

F (n− 1, j)


= −pn−iF (n− 1, i) + pn−iqn−1F (n− 1, i) = pn−i(qn−1 − 1)F (n− 1, i) .

Rearranging, we get:

F (n, i) = pF (n, i+ 1) + pn−i(qn−1 − 1)F (n− 1, i) . (RecF )

This enables us to compute F (n, i) for i < n starting with F (n, n). We still need to specify F (n, n),
and for this we do need the

∑
symbol, namely we use Eq. (Fni) with i = n:

F (n, n) =
n−1∑
j=1

F (n− 1, j) . (Fnn)

The recurrence (RecF ) together with the final condition (Fnn), and the trivial initial condition
F (1, i) = δi,1, enables us to efficiently compute F (n, i) for numeric (n, i), for {(n, i)|1 ≤ i ≤ n ≤ N}
for any finite N (not too large, but not too small either: e.g., N = 100 is still plausible). In
particular, we can compile a table of H(n)(p, q) = F (n+ 1, n+ 1)(p, q), for n ≤ N − 1.

A crash course in multivariable enumerative probability

Suppose that you have a finite set of objects S and several statistics f1(s), . . . , fr(s). The multi-
variable generating function (weight-enumerator under the weight xf1(s)

1 · · ·xfr(s)
r ) is defined to be:∑

s∈S
x
f1(s)
1 · · ·xfr(s)

r .

Suppose that you pick an element s ∈ S uniformly at random and you want the multivariable
generating function such that the coefficient of xa1

1 · · ·xarr would give you the probability that
f1(s) = a1, . . . , fr−1(s) = ar−1, andfr(s) = ar. It is given by:

P (x1, . . . , xr) =
1
|S|
∑
s∈S

x
f1(s)
1 · · ·xfr(s)

r .
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The expectations, f̄1, . . . , f̄r are simply

f̄i =
(

∂

∂xi
P

)
(1, . . . , 1) .

The centralized probability generating function, which has mean 0, is

P̃ (x1, . . . , xr) =
P (x1, . . . , xr)

xf̄1
1 · · ·x

f̄r
r

.

The mixed moments (about the mean) of the statistics f1(s), . . . , fr(s) are defined by

Mom[a1, . . . , ar] :=
1
|S|
∑
s∈S

(f1(s)− f̄1)a1 · · · (fr(s)− f̄r)ar .

Often it is more convenient to consider the mixed factorial moments, using the combinatorial
“powers” z(r) := z(z− 1) · · · (z− r+ 1), better known as the falling-factorials. The mixed factorial
moments are defined analogously by

FM [a1, . . . , ar] =
1
|S|
∑
s∈S

(f1(s)− f̄1)(a1) · · · (fr(s)− f̄r)(ar) .

Once you know the FM ’s for all a1, . . . , ar ≤M , you can easily figure out the Mom’s, using Stirling
numbers of the second kind (see [Z]). For our present purposes the sets S lie in the family of finite
sets Sn, and so the leading terms of the FM ’s and the Mom’s are the same. Hence for the leading
asymptotics it suffices to consider the easier FM ’s.

The best way to compute FM [a1, . . . , ar] for all 0 ≤ a1, . . . , ar ≤ N for some fixed positive integer
N is via the Taylor expansion of P̃ (x1, . . . , xr) around (x1, . . . , xr) = (1, . . . , 1), or equivalently, the
Maclaurin expansion of P̃ (1 + x1, . . . , 1 + xr)

P̃ (1 + x1, . . . , 1 + xr) =
∑

α1,...,αr≥0

FM(α1, . . . , αr)
α1! · · ·αr!

xα1
1 · · ·xαrr .

Back to inv-maj

In the present approach, we need to tolerate the more general discrete function F (n, i)(p, q) even
though ultimately we are only interested in H(n)(p, q) = F (n + 1, n + 1)(p, q). We will prove the
stronger statement that even if you restrict attention to those (n− 1)! permutations that end with
a specific i, it is still asymptotically-joint-independently normal.

Since the averages of both inv and maj over the permutations that end in i is n−i+(n−1)(n−2)/4,
the centralized probability generating function corresponding to F (n, i)(p, q) is:

G(n, i)(p, q) :=
F (n, i)(p, q)

(n− 1)!(pq)n−i+(n−1)(n−2)/4
.
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The recurrence (RecF ) becomes

G(n, i) =
1
q
G(n, i+ 1) +

pn−i(qn−1 − 1)
(pq)n/2(n− 1)

G(n− 1, i) , (RecG)

and the final condition becomes

G(n, n) =
1

n− 1

n−1∑
j=1

(pq)n/2−jG(n− 1, j) . (Gnn)

We also need the obvious initial condition G(1, i) = δi,1.

Guessing Polynomial Expressions for the Factorial Moments

Equipped with these efficient recurrences, our computer computes G(n, i)(p, q) for many values
of n and i. Then for each of these it computes the factorial moments FM(r, s)(n, i), for many
small numeric (r, s) by computing the (intial terms of the) taylor series centered at (p, q) = (1, 1).
Then it fixes numeric values of (r, s) and uses polynomial interpolation to guess explicit polynomial
expressions for FM(r, s)(n, i) as polynomials in (n, i), for that pair (r, s). The process is repeated
for many pairs (r, s). We note that it is obvious, both from the combinatorics and from the
recurrences, that FM(r, s)(n, i) are always polynomials in (n, i) for any fixed numeric r and s.

It would have been nice if we could guess closed-form expressions for FM(r, s)(n, i) for symbolic
(r, s), but no such closed-form exists as far as we know, and besides, it is too much to ask for and
more than we need. But to prove asymptotic normality we only need the leading terms. Viewing
the leading terms, our beloved computer easily conjectures the following expressions, for integers
r, s ≥ 0

FM(2r, 2s)(n, i) =
(2r)!
2rr!

(2s)!
2ss!

(
1
36

)r+s
n3r+3s + (lower − degree− terms− in− (n, i)) ,

FM(2r, 2s− 1)(n, i) =
(2r)!
2rr!

(2s)!
2ss!

(
1
36

)r+s−1

n3r+3s−6[−(s− 1)n3 − 6rn2i+ 18rni2 − 12ri3]

+(lower − degree− terms− in− (n, i)) ,

FM(2r−1, 2s)(n, i) = − (2r)!
2rr!

(2s)!
2ss!

(
1
36

)r+s−1

(r−1)n3r+3s−3+(lower−degree−terms−in−(n, i)) ,

FM(2r−1, 2s−1)(n, i) =
(2r)!
2rr!

(2s)!
2ss!

(
1
36

)r+s−1 9
2
n3r+3s−6(n−2i)2+(lower−degree−terms−in−(n, i)) .

Nice conjectures but what about proofs?

While we prefer the empirical approach of guessing, an alternative approach to finding many
FM(r, s)(n, i)’s is to first use (RecG) and (Gnn). Write G(n, i)(1 + p, 1 + q) as an infinite
generic Taylor series around (0, 0), and write-down the implied infinite-order recurrence expressing
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FM(r, s)(n, i) in terms of FM(r′, s′) with r′ + s′ < r+ s. Note that in order to generate FM(r, s)
we only need finitely many terms. Of course, as we have already commented, there is no hope for
finding a general expression for FM(2r, 2s)(n, i) , FM(2r, 2s− 1)(n, i) , FM(2r − 1, 2s)(n, i) and
FM(2r − 1, 2s − 1)(n, i), depending explicitly on r and s as well as on n and i, but to prove by
induction on r and s, that the above leading terms are valid, all we need is verify that the leading
terms of the implied recurrences for the FM(r, s)’s (easily derivable by hand, although we used the
computer) are consistent with the above explicit expressions.

The implication of (RecG) is

FM(r, s)(n, i)−FM(r, s)(n, i+1) = sFM(r, s−1)(n, i+1)−sFM(r, s−1)(n−1, i)+(lower−order−terms) ,

while the implication of Gnn starts with

FM(r, s)(n, n) =
1

n− 1

n−1∑
i=1

FM(r, s)(n− 1, i)− s

2(n− 1)

n−1∑
i=1

(2i− n)FM(r, s− 1)(n− 1, i)−

r

2(n− 1)

n−1∑
i=1

(2i− n)FM(r − 1, s)(n− 1, i) +
rs

4(n− 1)

n−1∑
i=1

(2i− n)2FM(r − 1, s− 1)(n− 1, i)

+(lower − order − terms) .

The next step is to refine these recurrences into the four cases where (r, s) are (even, even),
(even, odd), (odd, even), and (odd, odd). Once we have these four recurrences, we (or better, our
computer) plugs in the above conjectured expressions for the leading terms of FM(r′, s′)(n, i) for
r′ + s′ < r + s. When the dust settles, we are left with an expression with leading terms matching
those in our conjecture for FM(r, s)(n, i). The proof follows from a routine yet intricate proof by
induction on r + s.

The Maple package InvMaj

All the nitty-gritty calculations described above, that constitutes a fully rigorous proof, may be
found in the Maple package InvMaj accompanying this article. This package is available from the
webpage of the present article:

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/invmaj.html ,

where the reader can also find some sample input and output. The direct url of the package is:
http://www.math.rutgers.edu/~zeilberg/tokhniot/InvMaj .

La Grande Finale

The special case r = 1, s = 0 and r = 0, s = 1 give

FM(2, 0)(n, i) =
1
36
n3 +O(n2)
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FM(0, 2)(n, i) =
1
36
n3 +O(n2) .

So
FM(2r, 2s)

FM(2, 0)rFM(0, 2)s
=

(2r)!
2rr!

(2s)!
2ss!

+O(1/n) ,

FM(2r, 2s− 1)
FM(2, 0)rFM(0, 2)s−1/2

= o(1/n) ,

FM(2r − 1, 2s)
FM(2, 0)r−1/2FM(0, 2)s

= o(1/n) ,

FM(2r − 1, 2s− 1)
FM(2, 0)r−1/2FM(0, 2)s−1/2

= O(1/n) .

And we see that as n → ∞ these indeed converge to the mixed moments of the famous mixed
moments of the bivariate independent normal distribution e−a

2/2−b2/2/(2π) .

Encore: A more refined asymptotics for the (Normalized) Mixed Moments

With more effort, we (or rather, our computer) can guess-and-prove the following asymptotics for
the case of interest (n + 1, n + 1), i.e. the asymptotic expressions for the (genuine, not factorial)
normalized mixed-moments divided by the appropriate powers of the variances (also known as
mixed-alpha coefficients), let’s call them α(r, s)(n) . Indeed, according to S. B. Ekhad, we have:

α(2r, 2s)(n) =
(2r)!
2rr!

(2s)!
2ss!

(
1− 9(r2 + s2 − r − s)

25
· 1
n

+O(
1
n2

)
)

α(2r − 1, 2s− 1)(n) =
(2r)!
2rr!

(2s)!
2ss!

(
9

2n
+ (
−81
50

(r2 + s2) +
243
50

(r + s)− 1773
100

)
1
n2

+O(
1
n3

)
)

.

Of course, by symmetry α(2r, 2s − 1) and α(2r − 1, 2s) are identically (not just asymptotically!)
zero.
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