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Preface to the Second Edition

In addition to the considerable interest of the results proved in this article, and the even greater

interest of the methodology, this article is a landmark case in scholarly publishing. After the first

version of this article was outright rejected by an anonymous referee of the Proceedings of the

American Mathematical Society, because too many details were left to the reader (he or she didn’t

give us a chance to write a new version with more details), we decided to solicit nine non-anonymous

reports from world-class experts, assigning them specific parts. The division of labor (quite a few of

them did over and above of what we asked them to, and refereed everything), and the full reports,

on the first edition, can be gotten from the webpage of this article:

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/invmaj.html ,

already mentioned in footnote 1. With a few exceptions of stylistic suggestions that we preferred

not to adopt, we incorporated all of their (excellent!) suggestions. The first edition is also availabe

there, for the record.

In order to be faithful to the original version, we have included in square brackets, and smaller

font, the extra explanations demanded by the referees. We thank them profusely, and we now
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was published: April 5, 2010. Accompanied by the Maple package InvMaj downloadable from

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/invmaj.html .

The work of both authors was supported in part by the USA National Science Foundation.

Exclusively published in the Personal Journal of Shalosh B. Ekhad and Doron Zeilberger

http://www.math.rutgers.edu/~zeilberg/pj.html and arxiv.org. DZ is hereby offering $1000 to the first

person to point out a serious flaw in the argument, that would irreparably invalidate the proof. All the meta-

mathematical opinions expressed here are those of DZ.
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believe that the formal correctness and clarity far exceeds %99.99 of the articles published in

(anonymous!) “peer”-reviewed mathematical journals. Such journals, even electronic ones, will

soon become obsolete, together with their pompous “editors” and anonymous referees. Instead,

the present model of author(s)-appointed refereeing and self-publishing, in the authors’ personal

websites and the arxiv, with all the referee reports made public, and the referees acknowledged and

given explicit recognition for their trouble, would become the norm, possibly with some tweaking.

The present article is exclusively published in the Personal Journal of Shalosh B. Ekhad and Doron

Zeilberger and arxiv.org.

Human Statistics

Human statistics are numerical attributes defined on humans, for example, longevity, height, weight,

IQ, and it is well-known, at least empirically, that these are, each separately, asymptotically normal,

which means that if you draw a histogram with the statistical data, it would look like a bell-curve. It

is also true that they are usually joint-asymptotically-normal, but usually not independently so. But

if you compute empirically the correlation matrix, you would get, asymptotically (i.e. for “large”

populations) that they are close to being distributed according to a multivariate (generalized)

Gaussian exp(−Q(x1, x2, ...)) with Q(x1, x2, . . .) a certain quadratic form that can be deduced

from the correlation matrix.

Permutation Statistics

Let our population be the set of permutations of {1, 2, . . . , n}. They too, can be assigned numer-

ical attributes, and the great classical combinatorialist Dominique Foata (who got his Doctorat de

troisième cycle in statistics!) coined the term permutation statistics for them.

The most important permutation statistic is the number of inversions, inv(π), that counts the

number of pairs 1 ≤ i < j ≤ n such that πi > πj (and ranges from 0 to n(n− 1)/2). For example,

inv(314625) = 5, corresponding to the set of pairs {[1, 2], [1, 5], [3, 5], [4, 5], [4, 6]}. It features in

the definition of the determinant, and Netto proved that the probability generating function (the

polynomial in q such that its coefficient of qi is the probability that a uniformly-at-random n-

permutation has i inversions) is given by

(1)(1 + q)(1 + q + q2) · · · (1 + q + q2 + . . .+ qn−1)

n!
=

∏n
i=1(1− qi)
n!(1− q)n

.

The second most important permutation statistic is the major index, maj(π), that is the sum of

the places i, where πi > πi+1. For example, maj(314625) = 1 + 4 = 5, because at i = 1 and i = 4

we have descents. Major Percy Alexander MacMahon [M] famously proved that the probability

generating function for the major index is also given by that very same formula. In other words

the permutation statistics inv and maj are equidistributed. Dominique Foata [Fo] gave a lovely

seminal bijective proof that proved the stronger statement that inv and maj are equi-distributed

also when restricted to permutations ending at a given integer.

William Feller ([Fe], 3rd ed., p.257) proved that the number of inversions (and hence also the major
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index) is asymptotically normal in the following sense. Feller easily computed the expectation,

E[inv] = mn = n(n− 1)/4 ,

and the variance,

σ2
n =

2n3 + 3n2 − 5n

72
.

If we denote by Xn the centralized and normalized random variable

Xn =
inv −mn

σn
,

then Xn → N , as n→∞, in distribution, where N is the Gaussian distribution whose probability

density function is e−x
2/2/
√

2π.

A computer-generated proof, that gives much more detail about the rate of convergence to N , can

be obtained using Zeilberger’s Maple package

http://www.math.rutgers.edu/~zeilberg/tokhniot/AsymptoticMoments that accompanies the

article [Z].

So both inv and maj are individually asymptotically normal, but what about their interaction?

In this article, we prove that they are asymptotically joint-independently-normal. In other words,

defining,

Xn(π) :=
inv(π)−mn

σn
, Yn(π) :=

maj(π)−mn

σn
,

we have that

Pr(Xn ≤ s , Yn ≤ t)→
1

2π

∫ s

−∞

∫ t

−∞
e−x

2/2−y2/2 dy dx as n→∞.

A Brief History

It all started when the great Swedish probabilist Svante Janson (member of the Swedish Academy of

Science, that awards the Nobel prizes) asked Donald Knuth (one of the greatest computer scientists

of all time, winner of the Turing and Kyoto prizes, among many other honors) about the asymptotic

covariance of inv and maj. Neither of these luminaries knew the answer, so Don Knuth asked one

of us (DZ). DZ didn’t know the answer either, so he asked his beloved servant, Shalosh B. Ekhad,

who immediately ([E]) produced, not just the asymptotics, but the exact answer! It turned out

to be n(n − 1)/8. In particular, the correlation coefficient, Cov(inv,maj)/σ2
n =

n(n−1)
8

2n3+3n2−5n
72

=

9
2n +O(1/n2) tends to zero as n goes to infinity. It followed that in the long-run, inv and maj are

practically uncorrelated.

But there are lots of pairs of random variables that are uncorrelated yet not independent. A

convenient way to prove that Xn and Yn are asymptotically independent (we already know that

they are both normal) is to use the method of moments, and to prove that the mixed moments

Mr,s(n) := E[Xr
nY

s
n ] ,
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tend to the mixed moments of N ×N , as n→∞ . In other words, for r, s ≥ 1:

lim
n→∞

M2r,2s(n) =
(2r)!

2rr!

(2s)!

2ss!
, (EE)

lim
n→∞

M2r−1,2s(n) = 0 , (OE)

lim
n→∞

M2r,2s−1(n) = 0 , (EO)

lim
n→∞

M2r−1,2s−1(n) = 0 . (OO)

Ekhad’s brilliant approach to the Janson-Knuth question merely settled the case r = 1, s = 1 of

(OO). Of course, because of symmetry (OE) and (EO) are trivially true (before taking the limits!,

i.e. M2r,2s−1(n) ≡ 0 and M2r−1,2s(n) ≡ 0).

[Indeed if com([π1, . . . , πn]) := [n+1−π1, . . . , n+1−πn] then trivially maj(π)+maj(com(π)) = n(n−
1)/2 and inv(π) + inv(com(π)) = n(n− 1)/2. So Pr({Xn = i, Yn = j}) = Pr({Xn = −i, Yn = −j})
for all i, j, and it follows that

M2r,2s−1(n) =
∑
i,j

i2rj2s−1Pr({Xn = i, Yn = j}) =
∑
i,j

i2rj2s−1Pr({Xn = −i, Yn = −j}) =

∑
i,j

(−i)2r(−j)2s−1Pr({Xn = i, Yn = j}) = −
∑
i,j

(i)2r(j)2s−1Pr({Xn = i, Yn = j}) = −M2r,2s−1(n) ,

so M2r,2s−1(n) equals to its negative, and so must vanish. The proof that M2r−1,2s(n) = 0 is similar.]

One natural approach would be to extend Ekhad’s brilliant derivation of M1,1(n) to the general

case, and try to derive closed-form expressions for Mr,s(n) for larger r and s. Since Ekhad’s proof

[E] is so brief, we can cite it here in full.

“Svante Janson asked Don Knuth, who asked me, about the covariance of inv and maj. The

answer is
(
n
2

)
/4. To prove it, I asked Shalosh to compute the average of the quantity (inv(π) −

E(inv))(maj(π) − E(maj)) over all permutations of a given length n, and it gave me, for n =

1, 2, 3, 4, 5, the values 0, 1/4, 3/4, 3/2, 5/2, respectively. Since we know a priori2 that this is a

polynomial of degree ≤ 4, this must be it! ”.

Obviously this brute-brute-force approach would be hopeless for deriving polynomial expressions

for the moments Mr,s(n) for larger r and s. As we will soon see, the degree of the polynomial

M2r,2s(n) is 3(r + s), so for example, in order to (rigorously) guess M10,10(n), we would need 31

2 This is the old trick to compute moments of combinatorial ‘statistics’, described nicely in [GKP], section 8.2, by

changing the order of summation. It applies equally well to covariance. Rather than actually carrying out the gory

details, we observe that this is always a polynomial whose degree is trivial to bound. [Added in 2nd edition: the

referees didn’t find this obvious and asked for an explanation. See the bottom of page 8 and the top of page 9 in the

present article.].
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data points, and we would have to ask our computers to examine more than 31! > 0.822 · 1034

permutations.

However, an inspired, still “empirical” (yet fully rigorous) “brute-force” approach does work. The

first step would be to have a more efficient way to compute the moments Mr,s(n), for specific n

and specific r and s. We will do it by first designing an efficient way to generate the probability

generating function, let’s call it G(n)(p, q), for the pair of statistics (inv,maj). There are beautiful

closed-form expressions for G(n)(p, 1) and G(n)(1, q) (the same one, actually, due to Netto and

MacMahon, given in page 2), but no such closed-form expression seems to exist for the bi-variate

generating function, so the best that we can hope for is to find a recurrence scheme.

A Combinatorial Interlude

Let us forget about probability for a few moments, and focus on a fast algorithm for computing

H(n)(p, q) :=
∑
π∈Sn

pinv(π)qmaj(π) ,

for n up to, say, n = 50.

[ Referee Dan Romik believes that we should mention, at this point, the “explicit” formula of Roselle[R] (mentioned

by Knuth[K]) in terms of a certain infinite double product for the q-exponential generating function of H(n)(p, q).

Romik believes that this may lead to an alternative proof, that would even imply a stronger result (a local limit

law). We strongly doubt this, and DZ is hereby offering $300 for the first person to supply such a proof, whose

length should not exceed the length of this article.

This was proved by Joshua Swanson in his nice article http://arxiv.org/abs/1902.06724, and he won the prize.

Referee Christian Krattenthaler believes that we should also mention the beautiful extension of Roselle’s result, by

Adriano Garsia and Ira Gessel [GG], handling more permutation statistics. ]

Define the weight of a permutation π to be pinv(π)qmaj(π). Suppose that π ∈ Sn ends with i, so we

can write π = π′i, where π′ is a permutation of {1, . . . , i− 1, i+ 1, . . . n}.

When you chop off i from π to form π′ you always lose n− i inversions (that is, π′ has n− i fewer

inversions than π). The major index, however, decreases by n− 1 if the last letter of π′, let’s call

it j, is larger than i. If j < i the major index does not change at all. So writing π = π′′ji, we have

inv(π′′ji) = inv(π′′j) + n− i ,

maj(π′′ji) =

{
maj(π′′j), if j < i ;
maj(π′′j) + n− 1, if j > i.

Combining, we have

weight(π′′ji) =

{
pn−iweight(π′′j), if j < i ;
pn−iqn−1weight(π′′j), if j > i.
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So in order to compute H(n)(p, q), we need to introduce the more general weight-enumerators of

those permutations in Sn that end with an i. Let’s call these F (n, i)(p, q). In symbols:

F (n, i)(p, q) :=
∑
π∈Sn
πn=i

pinv(π)qmaj(π) .

It follows that (let’s omit the arguments (p, q) from now on):

F (n, i) = pn−i
i−1∑
j=1

F (n− 1, j) + pn−iqn−1
n−1∑
j=i

F (n− 1, j) . (Fni)

Note that, when we chop off the last entry, i, from π = π′′ji, π′′j is a permutation of {1, . . . , i −
1, i+ 1, . . . , n}. We then “reduce” π′′j to a permutation of {1, . . . , n− 1} by diminishing all entries

larger than i by 1. Hence the summation ranges from j = i to j = n− 1 rather than from j = i+ 1

to j = n.

Replacing i by i+ 1 in the above equation, we have:

F (n, i+ 1) = pn−i−1
i∑

j=1

F (n− 1, j) + pn−i−1qn−1
n−1∑
j=i+1

F (n− 1, j) .

Subtracting the former equation from p times the latter we get

F (n, i)− pF (n, i+ 1) =

pn−i
i−1∑
j=1

F (n− 1, j) + pn−iqn−1
n−1∑
j=i

F (n− 1, j)

−pn−i
i∑

j=1

F (n− 1, j)− pn−iqn−1
n−1∑
j=i+1

F (n− 1, j)

= pn−i

 i−1∑
j=1

F (n− 1, j)−
i∑

j=1

F (n− 1, j)

+ pn−iqn−1

 n−1∑
j=i

F (n− 1, j)−
n−1∑
j=i+1

F (n− 1, j)


= −pn−iF (n− 1, i) + pn−iqn−1F (n− 1, i) = pn−i(qn−1 − 1)F (n− 1, i) .

Rearranging, we get:

F (n, i) = pF (n, i+ 1) + pn−i(qn−1 − 1)F (n− 1, i) for 1 ≤ i < n . (RecF )

We still need to specify F (n, n), and for this we do need the
∑

symbol, namely we use Eq. (Fni)

with i = n:

F (n, n) =

n−1∑
j=1

F (n− 1, j) . (Fnn)

The recurrence (RecF ) together with the final condition (Fnn), and the trivial initial condition

F (1, i) = δi,1, enables us to efficiently compute F (n, i) for numeric (n, i), for {(n, i)|1 ≤ i ≤ n ≤ N}
for any finite N (not too large, but not too small either: e.g., N = 100 is still feasible). In particular,

we can compile a table of H(n)(p, q) = F (n + 1, n + 1)(p, q), (the generating function for all n-

permutations) for n ≤ N − 1.
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A crash course in multivariable enumerative probability

Suppose that you have a finite set of objects S and several statistics f1(s), . . . , fr(s). The multi-

variable generating function (weight-enumerator under the weight x
f1(s)
1 · · ·xfr(s)

r ) is defined to be:∑
s∈S

x
f1(s)
1 · · ·xfr(s)

r .

Suppose that you pick an element s ∈ S uniformly at random and you want the multivariable

generating function such that the coefficient of xa11 · · ·xarr would give you the probability that

f1(s) = a1, . . . , fr(s) = ar. It is given by:

P (x1, . . . , xr) =
1

|S|
∑
s∈S

x
f1(s)
1 · · ·xfr(s)

r .

The expectations, f̄1, . . . , f̄r are simply

f̄i =

(
∂

∂xi
P

)
(1, . . . , 1) .

The centralized probability generating function is

P̃ (x1, . . . , xr) =
P (x1, . . . , xr)

xf̄11 · · ·x
f̄r
r

.

The mixed moments (about the mean) of the statistics f1(s), . . . , fr(s) are defined by

Mom[a1, . . . , ar] =
1

|S|
∑
s∈S

(f1(s)− f̄1)a1 · · · (fr(s)− f̄r)ar .

Often it is more convenient to consider the mixed factorial moments, using the combinatorial

“powers” z(r) := z(z− 1) · · · (z− r+ 1), better known as the falling-factorials. The mixed factorial

moments are defined analogously by

FM(a1, . . . , ar) =
1

|S|
∑
s∈S

(f1(s)− f̄1)(a1) · · · (fr(s)− f̄r)(ar) .

Once you know the FM ’s for all a1, . . . , ar ≤ M , you can easily figure out the Mom’s (for

a1, . . . , ar ≤ M), using Stirling numbers of the second kind (see [Z]). It is well-known and easy

to see that one can just as well use the method of factorial moments in order to prove asymptotic

independence. In other words, it would suffice to prove the analogs of (EE), (OE), (EO), (OO)

with the moments E[Xr
nY

s
n ] replaced by the factorial moments E[X

(r)
n Y

(s)
n ].

The best way to compute FM(a1, . . . , ar) for all 0 ≤ a1, . . . , ar ≤M , for some fixed positive integer

M , is via the Taylor expansion of P̃ (x1, . . . , xr) around (x1, . . . , xr) = (1, . . . , 1), or equivalently,

the Maclaurin expansion of P̃ (1 + x1, . . . , 1 + xr)

P̃ (1 + x1, . . . , 1 + xr) =
∑

α1,...,αr≥0

FM(α1, . . . , αr)

α1! · · ·αr!
xα1

1 · · ·xαrr .
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Back to inv-maj

In the present approach, we need to put up with the more general discrete function F (n, i)(p, q)

even though ultimately we are only interested in H(n)(p, q) = F (n+ 1, n+ 1)(p, q). We will prove

the stronger statement that even if you restrict attention to those (n− 1)! permutations that end

with a specific i, the pair (inv,maj) is still asymptotically-joint-independently normal.

Since the averages of both inv and maj over the permutations that end in i is n−i+(n−1)(n−2)/4

[for inv it is obvious, the last entry i contributes n−i to the number of inversions, and removing the last entry yields

an n − 1-permutation, and for maj this follows from Foata’s bijection mentioned above that maps inv to maj

preserving the last entry], the centralized probability generating function corresponding to F (n, i)(p, q)

is:

G(n, i)(p, q) :=
F (n, i)(p, q)

(n− 1)!(pq)n−i+(n−1)(n−2)/4
.

The recurrence (RecF ) becomes

G(n, i) =
1

q
G(n, i+ 1) +

pn−i(qn−1 − 1)

(pq)n/2(n− 1)
G(n− 1, i) , (RecG)

and the final condition becomes

G(n, n) =
1

n− 1

n−1∑
j=1

(pq)n/2−jG(n− 1, j) . (Gnn)

We also need the obvious initial condition G(1, i) = δi,1.

Guessing Polynomial Expressions for the Factorial Moments

Equipped with these efficient recurrences, our computer computes G(n, i)(p, q) for many values of

n and i. Then for each of these it computes the (r, s) (mixed) factorial moments FM(r, s)(n, i), for

many small numeric (r, s) by computing the (initial terms of the) Maclaurin series for G(n, i)(1 +

p, 1 + q). We then fix numeric values of (r, s) and use polynomial interpolation to guess explicit

polynomial expressions for FM(r, s)(n, i) as polynomials in (n, i) for that pair (r, s). The process

is repeated for all pairs (r, s) for which 0 ≤ r, s ≤ M , for some pre-determined specific positive

integer M . We note that it is obvious, both from the combinatorics and from the recurrences, that

the FM(r, s)(n, i) are always polynomials in (n, i), for any fixed numeric r and s.

[As we have already mentioned in footnote 2, most of the referees didn’t find this obvious. The proof via the

recurrences (RecG′) and (Gnn′) to be derived in page 10 is by induction on (r, s) and the fact that the indefinite

sum of a polynomial (in this case with respect to i) is yet another polynomial, and the “operator” on the right of

(Gnn′) is polynomial-preserving.

Let’s sketch the combinatorial proof that the mixed moments Mr,s(n) are polynomials in n. The combinatorial

proof that FM(r, s)(n, i) are polynomials in both n and i is similar. Write inv(π) and maj(π) as a sum of

“atomic” events, e.g. for inv the sum of χ(πj > πi) over all pairs of integers (i, j) satisfying 1 ≤ i < j ≤ n. Here
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χ(S) = 1 if S is true and χ(S) = 0 if it is false. maj can be similarly expressed as a sum of χ(i ≤ j AND πj >

πj+1). The sum of inv(π)rmaj(π)s over all permutations π ∈ Sn can be expressed as a multi-sum with the

outer sum ranging over Sn and the inner sums with 2(r + s) sigma signs. Now do discrete Fubini! Bring the

formerly outer-sigma, over Sn, all the way inside past all the other 2(r+ s) sigma signs. Each individual sigma

sign involves one index of summation, and collectively these 2(r+ s) sigma signs involve ≤ 2(r+ s) such indices,

corresponding to locations in a generic n-permutation π, some of whom may coincide. Let’s call them i1 < ... < ik

( where k ≤ 2r+ 2s). These can be placed in lots of possible intertwining ways, and so can the values of π in those

places. There are still finitely many scenarios. (Formally, one gets a Cartesian product of two partially ordered sets,

one for the domain and one for the range, each of which has finitely many linear extensions. This is reminiscent of

Richard Stanley’s theory of P-partitions). For each particular such scenario (linear extension of the domain-poset

and the range-poset), there are
(
n
k

)
ways to choose the participant indices, and

(
n
k

)
ways to choose their occupants

(i.e. the values of π there) and the remaining n− k entries can, of course, be arranged in (n− k)! ways, yielding(
n
k

)2
(n − k)! ways. Dividing by n! gives

(
n
k

)2
(n − k)!/n! =

(
n
k

)
/k!, a polynomial in n of degree k. Now the

whole thing is a sum of finitely many such
(
n
k

)
/k! for 0 ≤ k ≤ 2r + 2s, and since a finite sum of polynomials is

still a polynomial, we are done! Now isn’t that obvious?! ]

It would have been nice if we could guess closed-form expressions for FM(r, s)(n, i) for symbolic

(r, s), but no such closed-form exists as far as we know, and besides it is too much to ask for

and more than we need. To prove asymptotic normality we only need the leading terms. Viewing

the leading terms, our beloved computer easily conjectures the following expressions. For integers

r ≥ 0, s ≥ 0 we have:

FM(2r, 2s)(n, i) =
(2r)!

2rr!

(2s)!

2ss!

(
1

36

)r+s
n3r+3s + (lower− total− degree− terms− in− (n, i)) .

[Note that the coefficients of n3r+3s−1i, n3r+3s−2i2 etc. are all zero, hence they don’t show up!].

For integers r ≥ 0, s ≥ 1 we have:

FM(2r, 2s− 1)(n, i) =
(2r)!

2rr!

(2s)!

2ss!

(
1

36

)r+s−1

n3r+3s−6[−(s− 1)n3 − 6rn2i+ 18rni2 − 12ri3]

+ (lower − total − degree− terms− in− (n, i)) .

For integers r ≥ 1, s ≥ 0 we have:

FM(2r−1, 2s)(n, i) = − (2r)!

2rr!

(2s)!

2ss!

(
1

36

)r+s−1

(r−1)n3r+3s−3 + (lower−total−degree−terms−in−(n, i)) .

For integers r ≥ 1, s ≥ 1 we have:

FM(2r−1, 2s−1)(n, i) =
(2r)!

2rr!

(2s)!

2ss!

(
1

36

)r+s−1
9

2
n3r+3s−6(n−2i)2 + (lower−total−degree−terms−in−(n, i)) .
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Nice conjectures but what about proofs?

While we prefer the empirical approach of guessing, an alternative approach to finding many

FM(r, s)(n, i)’s, that is also necessary in order to rigorously prove our conjectures, is to first use

(RecG) and (Gnn). Write G(n, i)(1 + p, 1 + q) as an infinite generic Taylor series around (0, 0),

and write down the implied infinite-order recurrences expressing FM(r, s) in terms of FM(r′, s′)

with r′ + s′ < r + s.

[The infinite-order recurrence for the FM(r, s)(n, i), obtained from (RecG) is gotten by expanding 1/(1 + q)

and
(1 + p)n−i(1 + q)n−i − 1

((1 + p)(1 + q))n/2

as Maclaurin series in (p, q), using the binomial theorem and manipulations on formal power series (that Maple

does automatically to any desired order), and combining terms. Similarly, the implication of (Gnn) is obtained by

expanding ((1 + p)(1 + q))n/2−j using the binomial theorem. Both of these tasks are accomplished by procedure

MOP in the Maple package InvMaj. ]

Note that in order to compute FM(r, s)(n, i), for any specific, numeric r and s, we only need

finitely many terms (actually rs − 1 of them) of the infinite-order recurrence, since eventually all

the contributions will be zero. Of course, as we have already commented, there is no hope for

finding a general expression for FM(2r, 2s)(n, i) , FM(2r, 2s− 1)(n, i) , FM(2r − 1, 2s)(n, i) and

FM(2r − 1, 2s − 1)(n, i), depending explicitly on r and s (i.e. symbolically in terms of r and s)

as well as on n and i, but to prove, by induction on r, s, that the above leading terms are valid,

all we need to do is to verify that the leading terms of the implied recurrences for the FM(r, s)’s

(that we have just talked about) are consistent with the above explicit expressions.

The implication of (RecG) is

FM(r, s)(n, i)− FM(r, s)(n, i+ 1) =

−sFM(r, s− 1)(n, i+ 1) + sFM(r, s− 1)(n− 1, i) +
rs(n− 2i)

2
FM(r − 1, s− 1)(n− 1, i) +

(lower − order − terms) , (RecG′)

while the implication of (Gnn) is:

FM(r, s)(n, n) =
1

n− 1

n−1∑
j=1

FM(r, s)(n− 1, j)− s

2(n− 1)

n−1∑
j=1

(2j − n)FM(r, s− 1)(n− 1, j)−

r

2(n− 1)

n−1∑
j=1

(2j − n)FM(r − 1, s)(n− 1, j) +
rs

4(n− 1)

n−1∑
j=1

(2j − n)2FM(r − 1, s− 1)(n− 1, j)

+(lower − order − terms) . (Gnn′)

[Referee Guoniu Han correctly commented that one must say something about the degree of the polynomials in (n, i)

that reside in the “lower-order terms” that feature as coefficients in these infinite-order recurrences. It turns out that

10



the coefficient of FM(r− r′, s− s′)(n− 1, i) in (RecG′) and the coefficient of FM(r− r′, s− s′)(n, i+ 1)

(and similarly for (Gnn′)) are polynomials in (n, i) of total degree ≤ r′+ s′, thanks to the binomial theorem, and

this would imply, by induction on (r, s) that not only are FM(2r, 2s)(n, i) etc. polynomials, but their leading

terms look as claimed above.]

The next step is to spell out these two recurrences each into the four cases according to whether

(r, s) is (even, even), (even, odd), (odd, even), and (odd, odd).

Once you have these eight recurrences, for each and every one of them, you plug in the above

conjectured expressions for the leading terms, and verify that up to the leading terms, things agree.

At the end of the day, after dividing by

(2r − 2)!

(r − 1)!2r−1

(2s− 2)!

(s− 1)!2s−1
,

this boils down to proving equalities among certain low-degree polynomials in (r, s) (namely the

leading coefficients, in (n, i)), that in turn, reduces (since A = B iff A − B = 0) to proving that

certain low-degree polynomials in (r, s) are identically zero.

So in order to check that these low-degree polynomials in (r, s) are all identically zero, it is enough to

check each of them for finitely (and not-too-many) numeric r, s. Typing Check1(FM8m(n,i),n,i);

and Check2(FM8m(n,i),n,i); in the Maple package InvMaj does exactly that, by checking that if

you plug in the conjectured leading terms of FM(2r, 2s)(n, i), FM(2r − 1, 2s)(n, i), FM(2r, 2s −
1)(n, i) and FM(2r − 1, 2s − 1)(n, i) and subtract the right sides from the left sides (for each of

the eight cases) you get lower-order polynomials, in (n, i), for all 1 ≤ r, s ≤ 8. This proves all

these claims (rigorously), with a vengeance! The (8/2)2 = 16 special cases are much more than is

needed, since the relevant polynomials in (r, s) are easily seen to have degree ≤ 2 so (2 + 1)2 = 9

agreements would have sufficed.

The Maple package InvMaj

All the nitty-gritty calculations described above, that constitute a fully rigorous proof, may be

found in the Maple package InvMaj accompanying this article. This package is available from the

webpage of the present article:

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/invmaj.html ,

where the reader can also find some sample input and output. The direct url of the package is:

http://www.math.rutgers.edu/~zeilberg/tokhniot/InvMaj .

La Grande Finale

The special cases r = 1, s = 0 and r = 0, s = 1 of the now proved formula for FM(2r, 2s) (displayed

at the middle of page 9) give

FM(2, 0)(n, i) =
1

36
n3 +O(n2) ,
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FM(0, 2)(n, i) =
1

36
n3 +O(n2) .

So (recall that we are interested in the normalized mixed factorial moments)

FM(2r, 2s)(n, i)

FM(2, 0)(n, i)rFM(0, 2)(n, i)s
=

(2r)!

2rr!

(2s)!

2ss!
+O(1/n) ,

FM(2r, 2s− 1)(n, i)

FM(2, 0)(n, i)rFM(0, 2)(n, i)s−1/2
= o(1/n) ,

FM(2r − 1, 2s)(n, i)

FM(2, 0)(n, i)r−1/2FM(0, 2)(n, i)s
= o(1/n) ,

FM(2r − 1, 2s− 1)(n, i)

FM(2, 0)(n, i)r−1/2FM(0, 2)(n, i)s−1/2
= O(1/n) .

And we see that as n → ∞ these indeed converge to the mixed moments of the famous mixed

moments of the bivariate independent normal distribution e−a
2/2−b2/2/(2π) .

Encore: A more refined asymptotics for the (Normalized) Mixed Moments

With more effort, we (or rather, our computer) can guess-and-prove the following asymptotics for

the case of interest (n+1, n+1), i.e. the asymptotic expressions for the centralized-and-normalized

(genuine, not factorial) mixed-moments, let’s call them α(r, s)(n), for the pair of random variables

(inv,maj) acting on the set of permutations of length n. Indeed, according to S. B. Ekhad, we

have:

α(2r, 2s)(n) =
(2r)!

2rr!

(2s)!

2ss!

(
1− 9(r2 + s2 − r − s)

25
· 1

n
+O(

1

n2
)

)
,

α(2r − 1, 2s− 1)(n) =
(2r)!

2rr!

(2s)!

2ss!

(
9

2n
+

(
−81

50
(r2 + s2) +

243

50
(r + s)− 1773

100

)
1

n2
+O(

1

n3
)

)
.

Of course, by symmetry (see page 4) α(2r, 2s− 1)(n) and α(2r − 1, 2s)(n) are identically (not just

asymptotically!) zero.
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