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Abstract: We use recurrences (alias difference equations) to prove that the two most important
permutation statistics, namely the number of inversions and the major indez, are asymptotically
joint-independently-normal. We even derive more-precise-than-needed asymptotic formulas for the

(normalized) mixed moments.
Human Statistics

Human statistics are numerical attributes defined on humans, for example, longevity, height, weight,
1Q), and it is well-known, at least empirically, that these are, each separately, asymptotically normal,
which means that if you draw a histogram with the statistical data, it would look like a bell-curve. It
is also true that they are usually joint-asymptotically-normal, but usually not independently so. But
if you compute empirically the correlation matriz, you would get, asymptotically (i.e. for “large”
populations) that they are close to being distributed according to a multivariate (generalized)
Gaussian exp(—Q(z1,x2,...)) with Q(z1,z2,...) a certain quadratic form that can be deduced
from the correlation matrix.

Permutation Statistics

Let our population be the set of permutations of {1,2,...,n}. They too, can be assigned numerical
attributes, and the great classical combinatorialist Dominique Foata (who got his 3rd-cycle doctorate
in statistics!) coined the term permutation statistics for them.
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The most important permutation statistic is the number of inversions, inv(7), that counts the
number of pairs 1 < i < j < n such that m; > 7; (and ranges from 0 to n(n — 1)/2). For example,
inv(314625) = 5, corresponding to the set of pairs {[1,2],[1,5],[3,5],[4,5],[4,6]}. It features in
the definition of the determinant, and Netto proved that their probability generating function (the
polynomial in ¢ such that its coefficient of ¢’ is the probability that a uniformly-at-random n-

permutation has ¢ inversions) is given by
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The second most important permutation statistic is the major index, maj(rw), that is the sum of
the places i, where m; > m;41. For example, maj(314625) = 1+ 4 = 5, because at i = 1 and ¢ = 4
we have descents. Major Percy Alexander MacMahon [M] famously proved that the probability
generating function for the major index is also given by that very same formula. In other words
the permutation statistics inv and maj are equidistributed. Dominique Foata [Fo] gave a lovely
seminal bijective proof that proved the stronger statement that inv and maj are equi-distributed
also when restricted to permutations ending at a given integer.

William Feller ([Fe], 3rd ed., p.257) proved that the number of inversions (and hence also the major
index) is asymptotically normal in the following sense. Feller easily computed the expectation,

Elinv] =m, =n(n-1)/4 ,

and the variance,

2 2n®+3n% —5n
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If we denote by Z,, the centralized and normalized random variable

g

mu —m
Z, = ooz ,
On
then Z, — N, as n — oo, in distribution, where A is the Gaussian distribution whose probability

density function is e‘x2/2/\/ 2.

A computer-generated proof, that gives much more detail about the rate of convergence to N, can
be obtained using Zeilberger’s Maple package
http://www.math.rutgers.edu/"zeilberg/tokhniot/AsymptoticMoments that accompanies the
article [Z].

So both ¢nv and maj are individually asymptotically normal, but what about their interaction, in

other words, what can you say about the limit of

1
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as n — oo and da,db — 07



In this article, we prove that this limit exists and equals (271')’16’@2/2’172/2. In other words, inv

and maj are asymptotically joint-independently-normal.
A Brief History

It all started when the great Swedish probabilist Svante Janson (member of the Swedish Academy of
Science, that awards the Nobel prizes) asked Donald Knuth (one of the greatest computer scientists
of all time, winner of the Turing and Kyoto prizes, among many other honors) about the asymptotic
covariance of inv and mayj. Neither of these luminaries knew the answer, so Don Knuth asked one
of us (DZ). DZ didn’t know the answer either, so he asked his beloved servant, Shalosh B. Ekhad,
who immediately ([E]) produced, not just the asymptotics, but the exact answer! It turned out

n(n—1)
= 2 +0(1/n?)

72
tends to zero as n goes to infinity. It followed that in the long-run, inv and maj are practically

to be n(n —1)/8. In particular, the correlation, Cov(inv, maj)/o} = sm5e—r

uncorrelated.

But there are lots of pairs of random variables that are uncorrelated yet not independent. A
convenient way to prove that X, := (inv —m,,)/o, and Y,, := (maj — m,,)/o, are asymptotically
independent (we already know that they are both normal) is to use the method of moments, and
to prove that the mixed moments

M, s(n) .= E[X]Y7] |

tend to the mixed moments of N' x N, as n — oo . In other words, for r, s > 1:

2r)! (2s)!

i, Mar2s(n) = (27’7«! 255l (EE)
nh_{fgo Msr—125(n) =0 (OF)
nh—>n;o My 25-1(n) =0 (EO)

nlLH;o Msy_125—1(n) =0 . (00)

Ekhad’s brilliant approach to the Janson-Knuth question merely settled the case r = 1,s = 1 of
(O0). Of course, because of symmetry (OF) and (EO) are trivially true (before taking the limits!,
i.e. Mgrvgsfl(n) =0 and Mgrflvgs(n) = 0)

One natural approach would be to extend Ekhad’s brilliant answer for M ;(n) to the general case,
and try to derive closed-form expressions for M, 4(n) for larger r and s. Since Ekhad’s proof [E] is
so brief, we can cite it here in full.

“Svante Janson asked Don Knuth, who asked me, about the covariance of inv and maj. The
answer is (Z) /4. To prove it, I asked Shalosh to compute the average of the quantity (inv(w) —
E(inv))(maj(r) — E(mayj)) over all permutations of a given length n, and it gave me, for n =
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1,2,3,4,5, the values 0,1/4,3/4,3/2,5/2, respectively. Since we know a priori? that this is a

polynomial of degree < 4, this must be it! =".

Obviously this brute-brute-force approach would be hopeless for deriving polynomial expressions
for the moments M, s(n) for larger r and s. As we will soon see, the degree of the polynomial
Ms, 25(n) is 3(r + s), so for example, in order to (rigorously) guess Mg 10(n), we would need 31
data points, and we would have to ask our computers to examine more than 31! > 0.822 - 1034

permutations.

However, an inspired, still “empirical” (yet fully rigorous) “brute-force” approach does work. The
first step would be to have a more efficient way to compute the moments M, 5(n), for specific n and
specificr and s. We will do it by first designing an efficient way to generate the probability generating
function, let’s call it G(n)(p, q), for the pair of statistics (inv, maj). There are beautiful closed-
form expressions for G(n)(1,q) and G(n)(p,1) (given above), but no such closed-form expression
seems to exist for the bi-variate generating function, so the best that we can hope for is to find a
recurrence scheme.

A Combinatorial Interlude

Let us forget about probability for a few moments, and focus on a fast algorithm for computing

H)(p.q)i= 3 o™i
7T€Sn

for n up to, say, n = 50.

Christian Krattenthaler, in his referee report mentioned in footnote 1, believes that we should
mention, at this point, the seminal work of Adriano Garsia and Ira Gessel [GG] on permutation
statistics, that may perhaps offer an alternative approach for proving the main result of the present
article, but this remains to be seen.

Define the weight of a permutation 7 to be pi™*(7)¢mai(™) - Suppose that 7 € S,, ends with i, so we

can write m = i, where 7’ is a permutation of {1,...,i —1,i+1,...n}.

When you chop off ¢ from 7 to form 7’ you always lose n — i inversions (that is, 7’ has n — i fewer
inversions than 7). The major index, however, decreases by n — 1 if the last letter of 7/, let’s call

it 7, is larger than i. If j < 4 the major index does not change at all. So writing m = «’ji, we have
inv(r”ji) = inv(n"j) +n—i |

o mag(n” ), if j<i;
maj( ﬂ)_{maj(ﬂ”j)—i-n—l, if j > 4.

This is the old trick to compute moments of combinatorial ‘statistics’, described nicely [GKP], section 8.2, by
changing the order of summation. It applies equally well to covariance. Rather than actually carrying out the gory

details, we observe that this is always a polynomial whose degree is trivial to bound.
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Combining, we have

i e o
weight(r"ji) = P wezght( 7); "y lf‘] N
p" g tweight(n"j), if j > i.
So in order to compute H(n)(p,q), we need to introduce the more general weight-enumerators of
those permutations in S,, that end with an ¢. Let’s call these F'(n,i)(p,q). In symbols:
F(n,i)(p,q) := Y _ pm(Mgma(™

TESn
T =1

It follows that (let’s omit the arguments (p, q) from now on):
F(n,i)=p"" > F(n—1,4)+p"'¢"" 'Y Fn—1,j) . (Fni)

Note that, when we chop off the last entry, i, from 7 = 7”ji, 7”j is a permutation of {1,...,7 —
1,i4+1,...,n}. We then “reduce” #n”j to a permutation of {1,...,n—1} by diminishing all entries
larger than ¢ by 1. Hence the summation ranges from j =4 to j = n — 1 rather than from j =i+ 1
to 5 =n.

Replacing ¢ by ¢ + 1 in the above equation we have:

F(n,i+1) = ””ZFn—lj "”"12 (n—1,5)

Jj=i+1
Subtracting the former equation from p times the latter we get
F(n,i) — pF(n,i+ )=
i—1
p”fiZF(n—lj ”’”IZFn—lj
j=1
_pn—iZF(n_Lj) nznlz n—l]
Jj=1 Jj=i+1
i—1 % n—1 n—1
=p" | Y Fn—-1,5)=Y Fn-14) | +p"'¢" " [ Y Fn—1,j)— > F(n—1,j)
J=1 J=1 J=t Jj=i+1

= —p""F(n—1,i)+p" ¢" ' F(n—1,i) = p" " (¢"' — 1)F(n — 1,4)
Rearranging, we get:
F(n,i) =pF(n,i+1)+p" "(¢" ' = 1)F(n—1,3) . (RecF)
We still need to specify F'(n,n), and for this we do need the > symbol, namely we use Eq. (Fni)
with ¢ = n:

n):iF(n—l,j) . (Fnn)

The recurrence (RecF') together with the final condition (Fnn), and the trivial initial condition
F(1,i) = 6;,1, enables us to efficiently compute F'(n, ) for numeric (n, ), for {(n,7)|]1 <i<n < N}
for any finite NV (not too large, but not too small either: e.g., N = 100 is still feasible). In particular,
we can compile a table of H(n)(p,q) = F(n+ 1,n+ 1)(p,q), for n < N — 1.



A crash course in multivariable enumerative probability

Suppose that you have a finite set of objects S and several statistics f1(s),..., fr(s). The multi-
variable generating function (weight-enumerator under the weight xf 1() x{f"(s)) is defined to be:

S 2l h

sSES

Suppose that you pick an element s € S wuniformly at random and you want the multivariable
generating function such that the coefficient of z7*---z% would give you the probability that
fi(s) = aq,..., fr(s) = a,. It is given by:

P(xy,...,z,) =

|S|Z ol

seES

The expectations, fi,..., f, are simply

ﬁ:(aip)u,...,n

The centralized probability generating function is

~ P(xy,...,2,
P(xl,...,$r):M

The mixed moments (about the mean) of the statistics fi(s),..., fr(s) are defined by

Momlay, ..., a, Z fi(s e (fr(s) = fr)

SES

Often it is more convenient to consider the mixed factorial moments, using the combinatorial
“powers” 2(") := z(z —1)---(z —r + 1), better known as the falling-factorials. The mixed factorial
moments are defined analogously by

FMlay,...,ar] = = > (fils) = f0) ) - (fr(s) = f) ()

Once you know the FM’s for all a1,...,a, < M, you can easily figure out the Mom’s (for
ai,...,a, < M), using Stirling numbers of the second kind (see [Z]). In particular, for the present
purposes, where our finite sets are the symmetric groups S,, the leading terms of the F'M’s and
the Mom’s are the same, so for the leading asymptotics, it suffices to consider the easier F'M’s.

The best way to compute FM|ay,...,a,] for all0 < ay,...,a, < M, for some fixed positive integer
M, is via the Taylor expansion of P(x1,...,x,) around (z1,...,2,) = (1,...,1), or equivalently,
the Maclaurin expansion of P(1+z1,...,1+4 x,)

Z FM(oa,...,ar) o

P(l4zy,...,1+x,) = P B—
O al

al,...,a.,VZU
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Back to inv-maj

In the present approach, we need to put up with the more general discrete function F(n,)(p, q)
even though ultimately we are only interested in H(n)(p,q) = F(n+1,n+ 1)(p,q). We will prove
the stronger statement that even if you restrict attention to those (n — 1)! permutations that end

with a specific 7, it is still asymptotically-joint-independently normal.

Since the averages of both inv and maj over the permutations that end in i is n—i+(n—1)(n—2)/4,
the centralized probability generating function corresponding to F'(n,)(p, q) is:

. F(n,1)(p,q)
G(na Z)(p, Q) = (TL _ 1)!(pq)n—i-£9(ﬂq—1)(n—2)/4

The recurrence (RecF') becomes

Y

T RECES Gn—1,1) (Rec@G)

Gn, i) = ;G(n,z’ 1) 4

and the final condition becomes

n—1

Y g * G —1,5) . (Gnn)

Jj=1

1
G(n,n) = —

We also need the obvious initial condition G(1,i) = d; 1.
Guessing Polynomial Expressions for the Factorial Moments

Equipped with these efficient recurrences, our computer computes G(n,4)(p, q) for many values of
n and ¢. Then for each of these it computes the factorial moments F M (r, s)(n, ), for many small
numeric (r,s) by computing the (initial terms of the) Maclaurin series for G(n,i)(1 + p,1 + ¢q).
We then fix numeric values of (r,s) and use polynomial interpolation to guess explicit polynomial
expressions for F'M(r, s)(n, i) as polynomials in (n, ) for that pair (r, s). The process is repeated for
all pairs (r, s) for which 0 < r,; s < M, for some pre-determined specific positive integer M. We note
that it is obvious, both from the combinatorics and from the recurrences, that the FM(r, s)(n,1)

are always polynomials in (n, 1), for any fixed numeric r and s.

It would have been nice if we could guess closed-form expressions for F'M(r,s)(n,i) for symbolic
(r,s), but no such closed-form exists as far as we know, and besides it is too much to ask for
and more than we need. To prove asymptotic normality we only need the leading terms. Viewing
the leading terms, our beloved computer easily conjectures the following expressions, For integers
r > 0,s > 0 we have:

2r)! (25)! (1\""°
FM(2r,2s)(n,i) = (2 7‘)' (2 S)' <36> n3" 135 4 (lower — degree — terms — in — (n, 1))
Trl 2%s!

For integers r > 0,s > 1 we have:

2\ (2s)! /1 \"T!
FM(2r,2s — 1)(n,i) = (2:“)‘ (Qj)' <36> n3 350 (s — 1)n® — 6rn?i + 18rni® — 12r4°]
r. S
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+(lower — degree — terms —in — (n, 1))

For integers r > 1, s > 0 we have:

2r)! (25)) 1\
FM(2r—1,2s)(n,i) = _(2:)' (235)' (36> (r—1)n* 3573 (lower—degree—terms—in—(n, 1))
rl 285!

For integers r > 1,s > 1 we have:

2r)! (25)) (1 \"7!
FM(2r—1,25—1)(n,i) = (QTT)' (288)' <36) gn3r+35_6(n—2i)2—i—(lower—degree—terms—in—(n, 7))
rl 253!

Nice conjectures but what about proofs?

While we prefer the empirical approach of guessing, an alternative approach to finding many
FM(r,s)(n,i)’s is to first use (RecG) and (Gnn). Write G(n,i)(1 + p,1 + q) as an infinite
generic Taylor series around (0,0), and write-down the implied infinite-order recurrences ex-
pressing F'M(r,s) in terms of FM(r',s") with " + s’ < r + s. Note that in order to compute
FM(r,s) we only need finitely many terms of the infinite-order recurrence, since eventually all
the contributions will be zero. Of course, as we have already commented, there is no hope for
finding a general expression for FM (2r,2s)(n,i) , FM(2r,2s — 1)(n,i) , FM(2r — 1,2s)(n,4) and
FM(2r —1,2s — 1)(n, i), depending explicitly on r and s as well as on n and i, but to prove, by
induction on r, s, that the above leading terms are valid, all we need to do is to verify that the
leading terms of the implied recurrences for the FM(r, s)’s (easily derivable by hand, although we
used the computer) are consistent with the above explicit expressions.

The implication of (RecG) is

FM(r,s)(n,i)—FM(r,s)(n,i+1) = —sFM(r,s—1)(n, i+1)+sFM(r,s—1)(n—1,i)+(lower—order—terms) ,

(RecG")
while the implication of Gnn is:
n—1 n—1
FM(r,s)(n,n) = ! ZFM(T s)(in—1,1) — 5 (20 —n)FM(r,s —1)(n —1,i)—
Y Y ’]’L—l pot Y ) 2(n_1) P Y 9
r n—1 rs n—1

m 7121(2@—’I’l)_FW.Z\4(7"— 1,8)(TL— 1,1) + m i:1(2i—n)2FM(T‘— 1,8— ].)(TL— ].,7/)

+(lower — order — terms) . (Gnn/)

The next step is to spell-out these two recurrences each into the four cases according to whether
(r,s) is (even,even), (even,odd), (odd,even), and (odd, odd).

Once you have these eight recurrences, for each and every one of them, you plug-in the above
conjectured expressions for the leading terms, and verify that up to the leading terms, things agree.
At the end of the day, after dividing by
2r—2)1  (2s—2)!
(r—1)12r=1 (s — 1)l25-1 7
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this boils down to proving equalities among certain low-degree polynomials in (r,s) (namely the
leading coefficients, in (n,4)), that in turn, reduces (since A = B iff A — B = 0) to proving that
certain low-degree polynomials in (r, s) are identically zero.

So in order to check that these low-degree polynomials in (r, s) are all identically zero, it is enough to
check each of them for finitely (and not-too-many) numeric r, s. Typing Checkl (FM8m(n,i),n,i);
and Check2(FM8m(n,1i),n,1i); in the Maple package InvMaj does exactly that, by checking that if
you plug-in the conjectured leading terms of F'M(2r,2s)(n,i), FM(2r — 1,2s)(n,i), FM(2r,2s —
1)(n,i) and FM(2r — 1,2s — 1)(n,i) and subtract the right sides from the left sides (for each of
the eight cases) you get lower-order polynomials, in (n,i), for all 1 < r;s < 8. This proves all
these claims (rigorously), with a vengeance! The (8/2)% = 16 special cases are much more than is
needed, since the relevant polynomials in (r, s) are easily seen to have degree <2 so (2+1)2 =9
agreements would have sufficed.

The Maple package InvMaj

All the nitty-gritty calculations described above, that constitute a fully rigorous proof, may be
found in the Maple package InvMaj accompanying this article. This package is available from the
webpage of the present article:

http://www.math.rutgers.edu/"zeilberg/mamarim/mamarimhtml/invmaj.html

where the reader can also find some sample input and output. The direct url of the package is:
http://www.math.rutgers.edu/ zeilberg/tokhniot/InvMaj

La Grande Finale

The special case r =1,s =0 and r =0,s = 1 give

FM(2,0)(n,i) = %ni” +0(n?

FM(0,2)(n, i) = %n?’ +0m?)
50 FM(2r, 25) (2r)! (25)!

= 1
FM(2,0)'FM(0,2)° 27l 253! +0(@1/n)

FM(2r,2s — 1)
=o(1
FM(@,0) FM(0,2)—172 ~ °Hm)
FM(2r —1,2s)
=o(1
FM(2,0)"=1/2FM(0,2)* o(l/n)

FM(2r — 1,25 — 1)
FM(2,0)~1/2FM(0, 2)5-1/2

And we see that as n — oo these indeed converge to the mixed moments of the famous mixed

= 0(1/n)

moments of the bivariate independent normal distribution e=a"/2-/2 /(27) o
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Encore: A more refined asymptotics for the (Normalized) Mixed Moments

With more effort, we (or rather, our computer) can guess-and-prove the following asymptotics for
the case of interest (n+1,n+1), i.e. the asymptotic expressions for the centralized-and-normalized
(genuine, not factorial) mixed-moments, let’s call them «(r, s)(n), for the pair of random variables

(inv,maj) acting on the set of permutations of length n. Indeed, according to S. B. Ekhad, we

e (20)! (25)! (902 + 52 —r—s)
2r)! (2s)! 9(r*+s°—r—s) 1 1
2r,2 = 1-— .
o(2r, 25)(n) 2l 2ss! < 25 n+0(n2)> ’
(2r)! (25)! [ 9 81, , . 243 1773 1 1

2 — 1,25 — 1)(n) = 2= i 2 L o(=
ar=1.2s = 1) = 5o onr \an T 50 )+ 55 (r+s) = 350052 +005)
Of course, by symmetry a(2r,2s—1)(n) and a(2r—1,2s)(n) are identically (not just asymptotically!)
zero.
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