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Abstract

We show how to enumerate words in 1m1 · · ·nmn that avoid the increasing consec-
utive pattern 12 · · · r for any r ≥ 2. Our approach yields an O(ns+1) algorithm to
enumerate words in 1s · · ·ns, avoiding the consecutive pattern 1 · · · r, for any s, and
any r. This enables us to supply many more terms to quite a few OEIS sequences,
and create new ones. We also treat the more general case of counting words with a
specified number of the pattern of interest (the avoiding case corresponding to zero
appearances). This article is accompanied by three Maple packages implementing our
algorithms.

1 Introduction

Simion and Wilf initiated the study of enumerating classical pattern-avoidance. This is a
very dynamic area with its own annual conference.

Recall that a permutation π = π1 · · · πn avoids a pattern σ = σ1 · · ·σk if none of the
(
n
k

)
length-k subsequences of π, reduces to σ.

Burstein [2], in a 1998 PhD thesis, under the direction of Wilf, pioneered the enumeration
of words avoiding a set of patterns. This field is also fairly active today, with notable
contributions by, inter alia, Mansour [3] and Pudwell [12].

The enumeration of permutations avoiding a given (classical) pattern, or a set of patterns,
is notoriously difficult, and it is widely believed to be intractable for most patterns, hence
it would be nice to have other notions for which the enumeration is more feasible. Such
an analog was given, in 2003, by Elizalde and Noy, in a seminal paper [5], that introduced
the study of the enumeration of permutations avoiding consecutive patterns. A permutation
π = π1 · · · πn avoids a consecutive pattern σ = σ1 · · ·σk if none of the n − k + 1 length-k
consecutive subwords, πiπi+1 · · · πi+k−1 of π, reduces to σ.

Algorithmic approaches to the enumeration of permutations avoiding sets of consecutive
patterns were given by Nakamura, Baxter, and Zeilberger [10, 1]. Our present approach may
be viewed as an extension, from permutations to words, of Nakamura’s paper, who was also
inspired by the Goulden-Jackson cluster method, but in a sense, is more straightforward,
and closer in spirit to the original Goulden-Jackson cluster method ([8], that is beautifully
exposited (and extended!) in [11]).

In this article we will consider consecutive patterns of the form 1 · · · r, i.e. increasing
consecutive patterns, and show how to count words in 1m1 · · ·nmn avoiding the pattern 1 · · · r
(Theorem 1, that is due to Ira Gessel [6]). Throughout this article we will only consider
consecutive patterns, so the word “consecutive” may be omitted. In particular, we will look
at how to efficiently count words in 1s · · ·ns avoiding the pattern 1 · · · r. All the sequences
for s = 1 and 3 ≤ r ≤ 9 are in the On-Line Encyclopedia of Integer Sequences, with many
terms. Also, quite a few of theses sequences for s > 1 are already there, but with very
few terms. Our implied algorithms are O(ns+1) and hence yield many more terms, and, of
course, new sequences.
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In the last part of the paper, we will provide a new proof of Theorem 1 by tweaking
the Goulden-Jackson cluster method. Using this proof, along with a little more effort, we
will generalize Theorem 1 to counting words with a specified number of the pattern 12 · · · r
(Theorem 3), instead of just avoiding, that is, having zero occurrence of the pattern of
interest.

We close this introduction by mentioning the pioneering work of Mendes and Remmel
[9], in combining the two keywords “consecutive patterns” and “words”. We were greatly
inspired by their article, but our focus is algorithmic.

Maple Packages: This article is accompanied by three Maple packages available from
the webpage:

http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/icpw.html .
These are
• ICPW.txt: For fast enumeration of sequences enumerating words avoiding increasing

consecutive patterns.
• ICPWt.txt: For fast computation of sequences of weight-enumerators for words accord-

ing to the number of increasing consecutive patterns (t = 0 reduces to the former case).
• GJpats.txt: For conjecturing generating functions (that still have to be proved by

humans).
This page also has links to numerous input and output files. The input files can be

modified to generate more data, if desired.

2 Method, experimentation, and results

2.1 The Goulden-Jackson cluster method

Recall that the original Goulden-Jackson method [8, 11] inputs a finite alphabet, A, that
may be taken to be {1, . . . , n}, and a finite set of “bad words”, B.

It outputs a certain rational function, let us call it F (x1, . . . , xn), that is the multi-
variable generating function, in x1, . . . , xn, for the discrete n-variable function

f(m1, . . . ,mn) ,

that counts the words in 1m1 · · ·nmn (there are altogether (m1 + · · ·+mn)!/(m1! · · ·mn!) of
them) that never contain as consecutive subwords (aka factors in linguistics) any member
of B. In other words:

F (x1, . . . , xn) =
∑

(m1,...,mn)∈Nn

f(m1, . . . ,mn)xm1
1 · · ·xmn

n .

This is nicely implemented in the Maple package DavidIan.txt, that accompanies [11], and
is freely available from

http://sites.math.rutgers.edu/~zeilberg/tokhniot/DavidIan.txt .
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For example, let n = 4, so the alphabet is {1, 2, 3, 4}, and let the set of “bad words” to
avoid be {1234, 1432}. Starting a Maple session and typing

read ‘DavidIan.txt’: lprint(subs(t=0,GJgf(1,2,3,4,[1,2,3,4],[1,4,3,2],x,t)));

immediately returns
1/(1-x[1]-x[2]-x[3]-x[4]+ 2*x[1]*x[2]*x[3]*x[4]) ,
that in Human language reads

1

1− x1 − x2 − x3 − x4 + 2x1x2x3x4
.

2.2 Enumerating words avoiding consecutive patterns: let the
computer do the guessing

Now we are interested in words in an arbitrarily large alphabet {1, . . . , n} avoiding a set of
consecutive patterns, but each pattern, e.g., 123, entails an arbitrarily large set of forbidden
consecutive subwords. For example, in this case, the set of forbidden consecutive subwords
is

{i1 i2 i3 | 1 ≤ i1 < i2 < i3 ≤ n} .

We can ask DavidIan.txt to find the generating function for each specific n, and then hope
to conjecture a general formula in terms of x1, . . . , xn, for general (i.e., symbolic) n.

This is accomplished by the Maple package GJpats.txt, available from the webpage of
this article. It uses the original DavidIan.txt to produce the corresponding generating
functions for increasing values for n, and then attempts to conjecture a meta-pattern. For
example for words avoiding the consecutive pattern 123 (alias the word 123), for n = 3,

GFpats({[1, 2, 3]}, x, 3, 0); (the 0 stands for having zero occurrences of (i.e., avoiding)
the pattern of interest) yields

1/(1− x1 − x2 − x3 + x1x2x3) .

This is simple enough. Moving right along,
GFpats({[1, 2, 3]}, x, 4, 0); yields

1/(1− x1 − x2 − x3 − x4 + x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 − x1x2x3x4) ,

while GFpats({[1, 2, 3]}, x, 5, 0); yields

1/(1− x1 − x2 − x3 − x4 − x5 + x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4 + x1x3x5 + x1x4x5+

x2x3x4+x2x3x5+x2x4x5+x3x4x5−x1x2x3x4−x1x2x3x5−x1x2x4x5−x1x3x4x5−x2x3x4x5) .

These look like symmetric functions. Procedure SPtoM(P,x,n,m) expresses a polynomial,
P, in the indexed variables x[1], . . . , x[n] in terms of the monomial symmetric polynomials
mλ. Applying this procedure we have

SPtoM(denom(GFpats({[1, 2, 3]}, x, 5, 0)), x, 5,m); yields
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-m[1, 1, 1, 1] + m[1, 1, 1] - m[1] + m[] .
SPtoM(denom(GFpats({[1, 2, 3]}, x, 6, 0)), x, 6,m); yields
m[1,1,1,1,1,1]-m[1,1,1,1]+m[1,1,1]-m[1]+m[] .
SPtoM(denom(GFpats({[1, 2, 3]}, x, 7, 0)), x, 7,m); yields
-m[1,1,1,1,1,1,1]+m[1,1,1,1,1,1]-m[1,1,1,1]+m[1,1,1]-m[1]+m[] .
You do not have to be a Ramanujan to conjecture the following result.
Fact: The generating function for words in {1, 2, . . . , n} avoiding the consecutive pattern

123, let us call it F3(x1, . . . , xn) is

F3(x1, . . . , xn) =
1

1− e1 + e3 − e4 + e6 − e7 + e9 − e10 + · · ·
,

where ei stands for the elementary symmetric function of degree i in x1, . . . , xn, i.e., the
coefficient of zi in (1 + x1 z) · · · (1 + xn z). (Note that ei = m1i .)

Doing the analogous guessing for the consecutive patterns 1234 and 12345, a meta-pattern
emerges, and we were safe in formulating the following theorem that we discovered using
the present experimental mathematics approach. After the first version of this article was
posted, we found out, thanks to Justin Troyka, that this theorem is due to Ira Gessel [6, p.
51].

Theorem 1. (Gessel [6]) For n ≥ 1, r ≥ 2, the generating function for words in {1, 2, . . . , n}
avoiding the consecutive pattern 12 · · · r, let us call it Fr(x1, . . . , xn) is

Fr(x1, . . . , xn) =
1

1− e1 + er − er+1 + e2r − e2r+1 + e3r − e3r+1 + · · ·
.

Of course, if Gessel did not prove it before us, these would have been “only” guesses, but
once known, humans can prove them. We did it by tweaking the cluster method to apply
to an arbitrarily large alphabet, i.e. where even the size of the alphabet, n, is symbolic. Our
proof of Gessel’s theorem will be given at the end of this article.

2.3 Efficient computations

Theorem 1 immediately implies the following partial recurrence equation for the actual
coefficients.

Fundamental Recurrence: Let fr(m) be the number of words in the alphabet {1, . . . , n}
with m1 1’s, m2 2’s, . . . , mn n’s (where we abbreviate m = (m1, . . . ,mn)) that avoid the
consecutive pattern 1 · · · r. Also let Vi be the set of 0 − 1 vectors of length n with i ones,
then

fr(m) =
∑
v∈V1

fr(m− v) −
∑
v∈Vr

fr(m− v)

+
∑

v∈Vr+1

fr(m− v) −
∑
v∈V2r

fr(m− v)
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+
∑

v∈V2r+1

fr(m− v) −
∑
v∈V3r

fr(m− v)

+
∑

v∈V3r+1

fr(m− v) −
∑
v∈V4r

fr(m− v) + · · · .

(Readers can check this derivation by multiplying each side of the equation in Theorem
1 by the denominator of the right hand side and then using the fact that Fr(x1, . . . , xn) =∑

(m1,...,mn)∈Nn fr(m1, . . . ,mn)xm1
1 · · ·xmn

n .)

Suppose that we want to compute f3(1
100), i.e., the number of permutations of length 100

that avoid the consecutive pattern 123. If we use the above recurrence literally, we would
need about 2100 computations, but there is a shortcut!

It follows from the symmetry of the generating function Fr(x1, . . . , xn), that fr(m1, . . . ,mn)
is symmetric, hence the above Fundamental Recurrence immediately implies the following
recurrence, that enables a very fast computation of the sequences, let us call them ar(n), for
the number of permutations of length n that avoid the consecutive pattern 1 · · · r.

2.3.1 Fast recurrence for enumerating permutations avoiding the consecutive
pattern 1 · · · r

ar(n) = nar(n−1)−
(
n

r

)
ar(n−r)+

(
n

r + 1

)
ar(n−r−1)−

(
n

2r

)
ar(n−2r)+

(
n

2r + 1

)
ar(n−2r−1)

−
(
n

3r

)
ar(n− 3r) +

(
n

3r + 1

)
ar(n− 3r − 1) − · · · .

This recurrence goes back to F. N. David and D. Barton [4, p. 157], whose proof used a
probabilistic language and an inclusion-exclusion argument that may be viewed as a precursor
of the cluster method, applied to the special case of increasing patterns.

Equivalently, we have the following exponential generating function:

∞∑
n=0

ar(n)
xn

n!
=

1

1− x+ xr

r!
− xr+1

(r+1)!
+ x2r

(2r)!
− x2r+1

(2r+1)!
+ x3r

(3r)!
− x3r+1

(3r+1)!
+ · · ·

.

While this ‘explicit’ (exponential) generating function is ‘nice’, it is more efficient to use
the fast recurrence. And indeed, the OEIS has these sequences for 3 ≤ r ≤ 9, with
many terms. These are (in order): A001212, A117158, A177523, A177533, A177553,

A230051, A230231.

2.3.2 Efficient computations of permutations of words with two occurrences of
each letter

Let br(n) be the number of words with 2 occurrences of each of 1, 2, . . . , n avoiding the
pattern 1 · · · r. Quite a few of them are currently (April 17, 2018) in the OEIS, but with
relatively few terms

6

http://oeis.org/A001212
http://oeis.org/A117158
http://oeis.org/A177523
http://oeis.org/A177533
http://oeis.org/A177553
http://oeis.org/A230051
http://oeis.org/A230231


• b3(n): A177555 (15 terms)
• b4(n): A177558 (15 terms)
• b5(n): A177564 (14 terms)
• b6(n): A177574 (14 terms)
• b7(n): A177594 (14 terms)
br(n) for r > 7 are not yet (April 17, 2018) in the OEIS.
We can compute br(n) in cubic time as follows. If you plug-in fr(2

n) into the Fundamental
Recurrence, you are forced to consider the more general quantities of the form fr(2

α1β).
Defining

Br(α, β) = fr(2
α1β) ,

and using symmetry, we get the following recurrence for Br(α, β).

Br(α, β) = αBr(α− 1, β + 1) + βBr(α, β − 1)

−
∑

i1+i2=r

(
α

i1

)(
β

i2

)
Br(α− i1, β − i2 + i1) +

∑
i1+i2=r+1

(
α

i1

)(
β

i2

)
Br(α− i1, β − i2 + i1)

−
∑

i1+i2=2r

(
α

i1

)(
β

i2

)
Br(α− i1, β− i2+ i1)+

∑
i1+i2=2r+1

(
α

i1

)(
β

i2

)
Br(α− i1, β− i2+ i1) − · · · .

In particular br(n) = Br(n, 0). Using this recurrence we (easily!) obtained 80 terms of each
of the sequences br(n) for 3 ≤ r ≤ 9, and could get many more. See the output file

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oICPW1.txt .

2.3.3 Efficient computations of permutations of words with three occurrences
of each letter

Let cr(n) be the number of words with 3 occurrences of each of 1, 2, . . . , n avoiding the
pattern 1 · · · r. Quite a few of them are currently (April 17, 2018) in the OEIS, but with
relatively few terms
• c3(n): A177596 (Only 10 terms)
• c4(n): A177599 (Only 10 terms)
• c5(n): A177605 (Only 10 terms)
• c6(n): A177615 (Only 9 terms)
• c7(n): A177635 (Only 9 terms)
cr(n) for r > 7 are not yet in the OEIS.
We can compute cr(n) in quartic time as follows. If you plug-in fr(3

n) into the Fun-
damental Recurrence, you are forced to consider the more general quantities of the form
fr(3

α2β1γ). Defining
Cr(α, β, γ) = fr(3

α2β1γ) ,

and using symmetry, we get the following recurrence for Cr(α, β, γ).

Cr(α, β, γ) = αCr(α− 1, β + 1, γ) + βCr(α, β − 1, γ + 1) + γCr(α, β, γ − 1)
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−
∑

i1+i2+i3=r

(
α

i1

)(
β

i2

)(
γ

i3

)
Cr(α− i1, β − i2 + i1, γ − i3 + i2)

+
∑

i1+i2+i3=r+1

(
α

i1

)(
β

i2

)(
γ

i3

)
Cr(α− i1, β − i2 + i1, γ − i3 + i2)

−
∑

i1+i2+i3=2r

(
α

i1

)(
β

i2

)(
γ

i3

)
Cr(α− i1, β − i2 + i1, γ − i3 + i2)

+
∑

i1+i2+i3=2r+1

(
α

i1

)(
β

i2

)(
γ

i3

)
Cr(α− i1, β − i2 + i1, γ − i3 + i2) − · · ·

In particular, cr(n) = Cr(n, 0, 0). Using this recurrence we (easily!) obtained 40 terms of
each of the sequences cr(n) for 3 ≤ r ≤ 9, and could get many more. See the output file

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oICPW1.txt .

2.3.4 Efficient computations of permutations of words with four occurrences of
each letter

Let dr(n) be the number of words with 4 occurrences of each of 1, 2, . . . , n avoiding the
pattern 1 · · · r. Quite a few of them are currently (April 17, 2018) in the OEIS, but with
relatively few terms.
• d3(n): A177637 (8 terms)
• d4(n): A177640 (8 terms)
• d5(n): A177646 (8 terms)
• d6(n): A177656 (8 terms)
• d7(n): A177676 (8 terms)
dr(n) for r > 7 are not yet in the OEIS.
We can compute dr(n) in quintic time as follows. If you plug-in fr(4

n) into the Fun-
damental Recurrence, you are forced to consider the more general quantities of the form
fr(4

α3β2γ1δ). Defining
Dr(α, β, γ, δ) = fr(4

α3β2γ1δ) ,

and using symmetry, we get the following recurrence for Dr(α, β, γ, δ).

Dr(α, β, γ, δ) = αDr(α−1, β+1, γ, δ)+βDr(α, β−1, γ+1, δ)+γDr(α, β, γ−1, δ+1)+δDr(α, β, γ, δ−1)

−
∑

i1+i2+i3+i4=r

(
α

i1

)(
β

i2

)(
γ

i3

)(
δ

i4

)
Dr(α− i1, β − i2 + i1, γ − i3 + i2, δ − i4 + i3)

+
∑

i1+i2+i3+i4=r+1

(
α

i1

)(
β

i2

)(
γ

i3

)(
δ

i4

)
Dr(α− i1, β − i2 + i1, γ − i3 + i2, δ − i4 + i3)

−
∑

i1+i2+i3+i4=2r

(
α

i1

)(
β

i2

)(
γ

i3

)(
δ

i4

)
Dr(α− i1, β − i2 + i1, γ − i3 + i2, δ − i4 + i3)

8

http://oeis.org/A177637
http://oeis.org/A177640
http://oeis.org/A177646
http://oeis.org/A177656
http://oeis.org/A177676


+
∑

i1+i2+i3+i4=2r+1

(
α

i1

)(
β

i2

)(
γ

i3

)(
δ

i4

)
Dr(α− i1, β − i2 + i1, γ − i3 + i2, δ − i4 + i3) − · · ·

In particular dr(n) = Dr(n, 0, 0, 0). Using this recurrence we (easily!) obtained 20 terms
of each of the sequences cd(n) for 3 ≤ r ≤ 9, and could get many more. See the output file

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oICPW1.txt .
Comment: Ira Gessel kindly informed us that an alternative approach to extracting

coefficients from the generating function in Theorem 1 is to use the elegant method described
in section 3 of his paper on symmetric functions and P-recursiveness [7].

2.4 Keeping track of the number of occurrences

Above we showed how to enumerate words avoiding the consecutive pattern 1 · · · r, in other
words, the number of words, with a specified number of each letters, with zero such patterns.
With a little more effort we can answer the more general question about the number of such
words with exactly j consecutive patterns 1 · · · r for any j, not just j = 0. Let W (m) =
W (m1, . . . ,mn) be the set of words in the alphabet 1, . . . , n with m1 1’s, . . . , mn n’s (note
that the number of elements of W (m) is (m1 + · · ·+mn)!/(m1! · · ·mn!)).

We are interested in the polynomials in t

gr(m; t) =
∑

w∈W (m)

tα(w) ,

where α(w) is the number of occurrences of the consecutive pattern 1 · · · r in the word w.
(For example α(831456178) = 3 if r = 3. Note that α(w) = 0 if w avoids the pattern.)

[Also note that gr(m; 0) = fr(m) and gr(m; 1) = (m1 + · · ·+mn)!/(m1! · · ·mn!).]
Using GJpats.txt we were able to conjecture the following theorem, whose proof will be

presented later.
We first need to define certain families of polynomial sequences.

Definition 2. For any integer k ≥ 1 and r ≥ 2, P
(r)
k (t) is defined as follows.

If k < r, then it is 0. If k = r then it is t− 1, and if k > r then

P
(r)
k (t) = (t− 1)

r−1∑
i=1

P
(r)
k−i(t) .

Theorem 3. For k ≥ 1, r ≥ 2, the generating function of gr(m; t), let us call it Gr(x1, . . . , xn; t),
is

Gr(x1, . . . , xn; t) =
1

1− e1 −
∑n

k=r P
(r)
k (t)ek

.

This implies the
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Fundamental Recurrence for gr: Let gr(m; t) be the weight-enumerator of words
in the alphabet {1, . . . , n} with m1 1’s, m2 2’s, . . .mn n’s (where we abbreviate m =
(m1, . . . ,mn)), using the weight “t raised to the power of the number of occurrences of
the consecutive pattern 1 · · · r”.

Also, let Vk be the set of 0− 1 vectors of length n with k ones. Then we have

gr(m) =
∑
v∈V1

gr(m− v) +
n∑
k=r

∑
v∈Vk

P
(r)
k (t) gr(m− v) .

Analogously to the avoidance case we can get efficient recurrences for the permutations,
and words in 1s · · ·ns, for each s > 1. For each s it is still polynomial time, but things are
slower because of the variable t. This is implemented in the Maple package ICPWt.txt .

3 Proofs

3.1 Proof of Theorem 1

We will use the general set-up of the Goulden-Jackson cluster method as described in Noonan
and Zeilberger’s paper [11], but will be able to make things simpler by taking advantage of
the specific structure of our forbidden patterns, which are the increasing patterns 1 · · · r.
That will enable us to use an elegant combinatorial argument, without solving a system of
linear equations.

First let us quickly review some basic definitions. (We will not go into the details of the
cluster method but readers who wish to see an excellent and concise summary of the cluster
method are welcome to refer to the first section of Wen’s paper [14].) A marked word
is a word with some of its factors (consecutive subwords) marked. We are assuming that
all the marks are in the set of bad words B. For example (13212; [1,3]) is a marked word
with 132 marked, with [1,3] denoting the location of the mark. A cluster is a marked word
where the adjacent marks overlap with each other and all the letters in the underlying word
belong to at least one mark of the cluster. For example (145632; [1,3],[2,4],[4,6]) is a cluster
whereas (145632; [1,3],[4,6]) is not. We let the weight of a marked word w = w1w2 · · ·wk be
weight(w) := (−1)|S| ·

∏k
i=1 x[wi] where S is the set of marks in w. For example, the weight

of the cluster (135632; [1,3],[2,4],[4,6]) is (−1)3x1x2x
2
3x5x6.

Let M be the set of all marked words in the alphabet {1, . . . , n}. Recall from [11] that
weight(M) = 1 + weight(M) · (x1 + x2 + · · · + xn)+weight(M) · weight(C) where C is
the set of all possible clusters. This implies that the multivariate generating function for
words avoiding the consecutive pattern 1 · · · r (i.e., our target generating function) is equal
to weight(M) = 1

1−e1−weight(C)
. So we only need to figure out weight(C). However, to use

the classical Goulden-Jackson cluster method, we would have to solve a system of
(
n
r

)
(the

number of bad words) equations (recall that we write C as a summation of C[v]’s where v
is a word in B, and for each C[v] there is an equation) and no obvious symmetry argument
seems to help. So we will use a slick combinatorial approach.
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Notice that since the pattern to be avoided is 12 · · · r, the clusters can only be of the
form

(a1 · · · aj; [1, r], . . .)

where
1 ≤ a1 < a2 < · · · < aj ≤ n .

Therefore weight(C) is a summations of multivariate monomials on x1, x2, . . . , xn where the
exponent of each variable xi is zero or one.

Any fixed monomial in weight(C) can come from many different clusters. The num-
ber of clusters it comes from and the coefficient of the monomial are uniquely determined
by the number of variables in the monomial. For example, for r = 3, the monomial
x1x3x5x6x7 can come from the cluster (13567; [1, 3], [2, 4], [3, 5]) or (13567; [1, 3], [3, 5]). The
first cluster contributes weight (−1)3x1x3x5x6x7 whereas the second cluster contributes
weight (−1)2x1x3x5x6x7. So when summing up, they cancel each other out and there is
no monomial x1x3x5x6x7 in weight(C). So is the case with any other monomial of degree 5.
Therefore, let us focus on the monomial x1x2x3 · · · xk and figure out its coefficient.

Definition 4. Let coeff(x1x2 · · ·xk) (k ≥ 1) be the coefficient of x1x2 · · ·xk in weight(C).

It is clear that for k < r, coeff(x1x2x3 · · ·xk) = 0, because 12 · · · k cannot be a cluster (it
does not have enough letters to be marked). And when k = r, we have coeff(x1x2 · · ·xk) =
−1, since there can be only one mark. So let us move on to the case when k > r. We have
the following Lemma.

Lemma 5. For k > r, coeff(x1x2 · · ·xk) = − coeff(x2x3 · · ·xk)− coeff(x3x4 · · ·xk) − · · ·−
coeff(xrxr+1 · · ·xk). (Equivalently, coeff(x1x2 · · ·xk) = − coeff(x1x2 · · ·xk−1)− coeff(x1x2 · · ·xk−2)−
· · ·− coeff(x1x2 · · ·xk−r+1).)

This is because there are (r − 1) ways in which the left-most marked word can “in-
terface” with the one to its immediate right. For example, if the clusters are of the form
(1 · · · k; [1, r], [3, r + 2], . . .) (that is, the second mark starts at 3), then the contribution
will be (−1)· coeff(x3x4 · · ·xk). This is simply because of the bijection between the set
of clusters in the form of (1 · · · k; [1, r], [3, r + 2], . . .) with set of the clusters in the form
(3 · · · k; [3, r+ 2], . . .). By peeling off the first mark [1, r], we just lose a factor of (−1) in the
coefficient of our monomial.

Similarly, if the clusters are of the form (1 · · · k; [1, r], [u, u+ r− 1], . . .) (1 < u ≤ r), then
the contribution from this case will be (−1)· coeff(xuxu+1 · · ·xk). Note that if k < 2r−1, there
cannot be as many as (r− 1) cases. However, in this case, we can make the convention that
there are (r− 1) places for the second mark because for k < r the coefficient of x1x2x3 · · ·xk
is 0. So the above formula still holds. For example, for the clusters associated with the word
123456, and r = 4, the first mark has to be 1234, the second mark can only be 2345 or
3456. But, according to the natural convention, the second mark can also start with 4 and
be 456, and so, coeff(x1x2x3x4x5x6) = −coeff(x2x3x4x5x6)−coeff(x3x4x5x6)−coeff(x4x5x6)=
−coeff(x2x3x4x5x6)−coeff(x3x4x5x6).

11



So we have: coeff(x1x2 · · ·xr) = −1; coeff(x1x2 · · ·xr+1) = (−1)·(−1) = 1; coeff(x1x2 · · ·xr+2) =
−coeff(x2x3 · · · xr+2) − coeff(x3x4 · · ·xr+2) = −coeff(x1x2 · · ·xr+1) − coeff(x1x2 · · ·xr) = 0.
Continuing this process, it is easy to see that x1x2 · · ·xmr (m ≥ 1) has coefficient −1 (so
is any other monomial of degree mr ) and x1x2 · · ·xmr+1 has coefficient 1 (so is any other
monomial of degree mr + 1). The monomials with other number of variables all have co-
efficient 0. From this argument and summing over all clusters, we conclude weight(C) =
−er + er+1 − e2r + e2r+1 + · · · and therefore weight(M) = 1

1−e1+er−er+1+e2r−e2r+1+··· .

3.2 Proof of Theorem 3

This proof can be directly generalized from the proof of Theorem 1 based on the ‘t-generalization’
described in Noonan and Zeilberger’s paper [11]. Again, let the set of marked words on
{1, 2, . . . , n} be M . However, this time we let the weight of a marked word w of length
k be weight(w) := (t − 1)|S| ·

∏k
i=1 x[wi] where S is the set of marks in w. We still have

weight(M) = 1+weight(M)·(x1+x2+· · ·+xn)+weight(M)·weight(C) andGr(x1, . . . , xn; t)
is equal to weight(M), which is 1

1−e1−weight(C)
.

The procedure to calculate weight(C) directly follows from the proof of Theorem 1. We
simply replace (−1) with (t−1) in various places, because the only difference is that now we
assign a different weight to a marked word. For example, we have coeff(x1x2 · · ·xr) = t− 1;
coeff(x1x2 · · ·xr+1) = (t−1)(t−1) = (t−1)2; coeff(x1x2 · · ·xr+2) = (t−1)(coeff(x2x3 · · · xr+2)
+ coeff(x3x4 · · ·xr+2)) = (t − 1)((t − 1) + (t − 1)2). Again it is clear that for k < r,
coeff(x1x2x3 · · ·xk) = 0 and when k = r, coeff(x1x2 · · ·xk) = t − 1. For the case when
k > r, we generalize Lemma 5 to the following:

Lemma 6. For k > r, coeff(x1x2 · · ·xk) = (t − 1) (coeff(x2x3 · · ·xk)+ coeff(x3x4 · · ·xk) +
· · ·+coeff(xrxr+1 · · ·xk)). (Equivalently, coeff(x1x2 · · · xk) = (t − 1) (coeff(x1x2 · · ·xk−1)+
coeff(x1x2 · · ·xk−2) + · · ·+ coeff(x1x2 · · ·xk−r+1).)

The proof of Lemma 6 directly generalizes from the proof of Lemma 5. Now one mark con-
tributes a factor of (t−1) instead of (−1) to the weight of a marked word. For example, for the
clusters associated with the word 123456, and r = 3, the first mark has to be 123, the second
mark can be 234 or 345. So coeff(x1x2x3x4x5x6) = (t−1)(coeff(x2x3x4x5x6)+coeff(x3x4x5x6)).
In general, like in the proof of Theorem 1, if we are interested in keeping track of the number
of appearances of the consecutive pattern 12 · · · r, then there are (r− 1) scenarios of clusters
that can give rise to the monomial x1x2 · · ·xk, depending on where the second mark is. By
peeling off the first mark, now we lose a factor of (t− 1) instead of (−1) in the coefficient of
our monomial.

As the coefficients of the monomials of the same length are the same, Lemma 6 immedi-
ately implies that weight(C) =

∑n
k=r P

(r)
k (t)ek where P

(r)
k (t) satisfies the recurrence

P
(r)
k (t) = (t− 1)

r−1∑
i=1

P
(r)
k−i(t) .

12



(In fact P
(r)
k (t) is just a concise way of writing coeff(x1x2 · · ·xk), where the consecutive

pattern of interest is 12 · · · r.) From this Theorem 3 follows directly.
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