Solutions to Homework 2 SOSC 30100, Sept. 9, 2013

1. Here $f(x)=5 x^{2}-4 * x$ the difference quotient in general is

$$
\frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

In this problem it is:

$$
\frac{f(x+\Delta x)-f(x)}{\Delta x}=\frac{\left[5(x+\Delta x)^{2}-4(x+\Delta x)\right]-\left[5 x^{2}-4 x\right]}{\Delta x}
$$

Using the famous $(a+b)^{2}=a^{2}+2 a b+b^{2}$ this equals

$$
\frac{5 x^{2}+10(\Delta x) x+5(\Delta x)^{2}-4 x-4(\Delta x)-5 x^{2}+4 x}{\Delta x}
$$

Simplifying, this equals:

$$
\frac{10(\Delta x) x+5(\Delta x)^{2}-4(\Delta x)}{\Delta x}
$$

Factoring the top, this equals:

$$
\frac{(\Delta x)(10 x+5(\Delta x)-4)}{\Delta x}
$$

Cancelling out Δx from top and bottom gives that this equals

$$
10 x-4+5 \Delta x
$$

Ans. to 1a: The difference quotient is $2 x-4+5 \Delta x$.
(b) The derivative is the limit as $\Delta x \rightarrow 0$.

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} .=\lim _{\Delta x \rightarrow 0} 10 x-4+5 \Delta x=10 x-4+5 \cdot 0=10 x-4
$$

Ans. to 1b: The derivative $d y / d x$ is $10 x-4$.
Sol. to 1c: Since $f^{\prime}(x)=10 x-4$, we have $f^{\prime}(2)=10 \cdot 2-4=20-4=16$ and $f^{\prime}(3)=10 \cdot 3-4=$ $30-4=26$ and

2 Using the famous formula, $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$ we can simplify q
$q=\frac{(v+2)^{3}-8}{v}=\frac{v^{3}+3 v^{2}(2)+3 v\left(2^{2}\right)+2^{3}-8}{v}=\frac{v^{3}+6 v^{2}+12 v}{v}=\frac{\left(v^{2}+6 v+12\right) v}{v}=v^{2}+6 v+12$.

This is a nice polynomial in v so to find the limit at a point, just plug-it in
a. $\lim _{v \rightarrow 0} q=0^{2}+6 \cdot 0+12=12$
b. $\lim _{v \rightarrow 2} q=2^{2}+6 \cdot 2+12=4+12+12=28$
c. $\lim _{v \rightarrow a} q=a^{2}+6 \cdot a+12=4+12+12=28$
3. We use the constant multiple rule (you can always take a constant out of the differentiation) and the famous rule

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

a.

$$
\frac{d}{d x}\left(-x^{-4}\right)=-\left(\frac{d}{d x} x^{-4}\right)=-(-4) x^{-5}=4 x^{-5}
$$

b.

$$
\frac{d}{d u}\left(a u^{b}\right)=a\left(\frac{d}{d u} u^{b}=a b u^{b-1}\right.
$$

c.

$$
\frac{d}{d x} c x^{2}=c\left(\frac{d}{d x} x^{2}=c(2 x)=2 c x\right.
$$

d.

$$
\frac{d}{d x}\left(7 x^{1 / 3}\right)=7\left(\frac{d}{d x} x^{1 / 3}\right)=7 \cdot(1 / 3) x^{-2 / 3}=\frac{7}{3} x^{-\frac{2}{3}}
$$

4. The product rule is $(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$.
a. $\left(\left(9 x^{2}-1\right)(3 x+1)\right)^{\prime}=\left(9 x^{2}-1\right)^{\prime}(3 x+1)+\left(9 x^{2}-1\right)(3 x+1)^{\prime}=(18 x)(3 x+1)+\left(9 x^{2}-1\right) 3=$ $54 x^{2}+18 x+27 x^{2}-3=81 x^{2}+18 x-3$
b. $\left((a x-b)\left(c x^{2}\right)\right)^{\prime}=(a x-b)^{\prime}\left(c x^{2}\right)+(a x-b)\left(c x^{2}\right)^{\prime}=(a)\left(c x^{2}\right)+(a x-b)(2 c x)=a c x^{2}+2 a c x^{2}-2 b c x=$ $3 a c x^{2}-2 b c x$
c.
$[(2-3 x)(1+x)(x+2)]^{\prime}=(2-3 x)^{\prime}(1+x)(x+2)+(2-3 x)(1+x)^{\prime}(x+2)+(2-3 x)(1+x)(x+2)^{\prime}=(-3)(1+x)(x+2)+(2-3 x)(1)($. $=-3(1+x)(x+2)+(2-3 x)(x+2)+(2-3 x)(1+x)$.
d.
$\left[\left(x^{2}+3\right) x^{-1}\right]^{\prime}=\left(x^{2}+3\right)^{\prime}\left(x^{-1}\right)+\left(x^{2}+3\right)\left(x^{-1}\right)^{\prime}=(2 x)\left(x^{-1}\right)+\left(x^{2}+3\right)(-1) x^{-2}=2-\left(1+3 x^{-2}\right)=1-3 x^{-2}$.
5. For (a) and (b) it is better to first simplify, and then differentiate. For (c) and (d) we need the quotient rule.
a.

$$
\left(\left(x^{2}+3\right) / x\right)^{\prime}=(x+3 / x)^{\prime}=\left(x+3 x^{-1}\right)^{\prime}=x^{\prime}+3\left(x^{-1}\right)^{\prime}=1+3(-1) x^{-2}=1-\frac{3}{x^{2}}
$$

b.

$$
((x+7) / x)^{\prime}=(1+7 / x)^{\prime}=\left(1+7 x^{-1}\right)^{\prime}=1^{\prime}+7\left(x^{-1}\right)^{\prime}=0+7(-1) x^{-2}=-\frac{7}{x^{2}}
$$

The quotient rule is:

$$
\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

c.

$$
\left(\frac{4 x}{x+5}\right)^{\prime}=\frac{(4 x)^{\prime}(x+5)-4 x(x+5)^{\prime}}{(x+5)^{2}}=\frac{4(x+5)-4 x(1)}{(x+5)^{2}}=\frac{4 x+20-4 x}{(x+5)^{2}}=\frac{20}{(x+5)^{2}}
$$

d.

$$
\begin{aligned}
\left(\frac{a x^{2}+b}{c x+d}\right)^{\prime}= & \frac{\left(a x^{2}+b\right)^{\prime}(c x+d)-\left(a x^{2}+b\right)(c x+d)^{\prime}}{(c x+d)^{2}}=\frac{(2 a x)(c x+d)-\left(a x^{2}+b\right)(c)}{(c x+d)^{2}} \\
& =\frac{2 a c x^{2}+2 a d x-a c x^{2}-b c}{(c x+d)^{2}}=\frac{a c x^{2}+2 a d x-b c}{(c x+d)^{2}}
\end{aligned}
$$

6. The chain rule says

$$
\frac{d w}{d x}=\frac{d w}{d y} \cdot \frac{d y}{d x}
$$

Here

$$
\frac{d w}{d y}=2 a y \quad, \quad \frac{d y}{d x}=2 b x
$$

Hence

$$
\frac{d w}{d x}=(2 a y)(2 b x)=4 a b x y
$$

Finally we replace y by what it stands for in terms of x, getting

$$
\frac{d w}{d x}=4 a b x y=2 a b x\left(b x^{2}+c x\right)=2 a b x^{2}(b x+c)
$$

7.

$$
\left((16 x+3)^{-2}\right)^{\prime}=(-2)\left((16 x+3)^{-3}\right) \cdot(16 x+3)^{\prime}=(-2)\left((16 x+3)^{-3}\right) \cdot(16)=-32(16 x+3)^{-3} .
$$

By the quotient rule:

$$
\left(\frac{1}{(16 x+3)^{2}}\right)^{\prime}=\frac{1^{\prime}(16 x+3)^{2}-1\left((16 x+3)^{2}\right)^{\prime}}{(16 x+3)^{4}}=\frac{\left.0 \cdot(16 x+3)^{2}-1((2) 16 x+3)\right)(16)}{(16 x+3)^{4}}=\frac{-32}{(16 x+3)^{3}}=-32(16 x+3)^{-3}
$$

The answers are identical because God (or Newton) said so!
8.
a. When x is VERY BIG $-7 x+5$ and -1 are insignifcant compared to $2 x^{2}$ and x respectively, hence it is possible to only retain the leading powers at the top and bottom.

$$
\lim _{x \rightarrow \infty} \frac{x-1}{2 x^{2}-7 x+5}=\lim _{x \rightarrow \infty} \frac{x}{2 x^{2}}=\lim _{x \rightarrow \infty} \frac{1}{2 x}=\frac{1}{2 \infty}=0 .
$$

Ans. to 8a: 0 .

. Since the top and bottom happen to be 0 at $x=1$, we can use L'Hôpital's rule:

$$
\lim _{x \rightarrow 1} \frac{x-1}{2 x^{2}-7 x+5}=\lim _{x \rightarrow 1} \frac{(x-1)^{\prime}}{\left(2 x^{2}-7 x+5\right)^{\prime}}=\lim _{x \rightarrow 1} \frac{1}{4 x-7}=\frac{1}{4 \cdot 1-7}=-\frac{1}{3}
$$

Ans. to 8b: $-\frac{1}{3}$.
Comment: We can also do it only using algebra

$$
\lim _{x \rightarrow 1} \frac{x-1}{2 x^{2}-7 x+5}=\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(2 x-5)}=\lim _{x \rightarrow 1} \frac{1}{2 x-5}=\frac{1}{2 \cdot 1-5}=-\frac{1}{3} .
$$

9.

First way: Using algebra, $f(x)=x+1$ when $x \neq 1$. Since $f(1)=2$ the function given is a coplicated way of writing down $f(x)=x+1$ that is well-known to be continuous.

Second Way: $f(x)$ is continuous when $x \neq 1$ (since it is a quotient of two continuous functions, and the denominator does not vanish). The limit of $f(x)$ as x goes to 1 happens to be 2 (either by L'Hôpital or using algebra). Since the limit of $f(x)$ as x goes to 1 equals $f(1)$, it is also continuous at $x=1$, hence it is continuous over all the real line.
10. By the product and chain rules:

$$
f^{\prime}(x)=\left(\frac{1}{2}\left(x^{2}+4 x-9\right)^{3} x^{-2}\right)^{\prime}=\frac{1}{2}\left(\left(x^{2}+4 x-9\right)^{3} x^{-2}\right)^{\prime}=
$$

$\frac{1}{2}\left[\left(\left(x^{2}+4 x-9\right)^{3}\right)^{\prime} x^{-2}+\left(\left(x^{2}+4 x-9\right)^{3}\right)\left(x^{-2}\right)^{\prime}\right]=\frac{1}{2}\left[\left(3\left(x^{2}+4 x-9\right)^{2}(2 x+4) x^{-2}+\left(\left(x^{2}+4 x-9\right)^{3}\right)(-2) x^{-3}\right]\right.$ quad.
I hope that you don not expect me to simplify!

