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Every Fifth1 Real Number is Evil

Doron ZEILBERGER

In fond memory of my beloved cousin Matti Weiss (1945-2025) who ignited my love of mathematics

Abstract: Fifteen years ago, then-Carleton-undergrad, Isaac Hodes, proved that the Golden Ratio

is evil. In this modest contribution to human knowledge, we show that in fact, every fifth real

number is evil, and we present lots of other interesting numbers that are evil. We also show (in

addition to many other fascinating facts), that the expected evil-location of a random evil number

is 148.185185185185185 . . . . It follows that the Golden Ratio is a fairly average evil real number,

since, as first computed by Hodes, its evil location is 146.

Maple package: This article is accompanied by a Maple package Hodes.txt, available from

http://sites.math.rutgers.edu/~zeilberg/tokhniot/Hodes.txt .

The front of this article

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hodes.html ,

contains numerous output files, some of which will be referred to later.

Original Definition: ([H]) A real number is evil if the sequence of digits in its decimal represen-

tation to the right of the decimal point (in other words, its fractal part) has the property that one

of its partial sums is the satanic number 666.

Hodes[H] showed that, according to his definition, the golden ratio 1+
√
5

2 , is evil, and the evil

location is 146, i.e. the sum of the first 146 digits after the decimal point equals 666.

But Hodes’ definition is unfair to the digits to the left of the decimal point. Also it is decimal-

centric, dependent on the contingent fact that we humans have ten fingers. Also there are lots of

other definitions of being evil . For example mine is 359 (the gematria value of satan ([shin, tet,

nun]). Of course 13 is a famous one. 666 is the Gematria value of “Emperor Neron” ([nun, resh,

vav,nun], [kuf,samech, resh]).

A more satisfactory and general definition is the following.

My Definition of Evil Real Number: A real number is n-evil to base b if removing the decimal

point (more generally: the base b ‘point’), one of the partial sums of its sequence of digits equals n.

Note that according to my definition, the Golden Ratio φ, is not evil, but φ− 1 =
√
5−1
2 is.

It turns out that the Golden Ratio φ (or according to our definition φ− 1) is not that special, and

we have the following.

1 More precisely:

every 5.000000000000000000000000000000000000000000000000000000000000005415558-th real number
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Fact: The probability that a random real number (in base 10) would have one of its partial sums

equal to 666 is exactly

0.19999999999999999999999999999999999999999999999999999999999999978337773162864760552794625 . . . .

It follows that one in every

5.0000000000000000000000000000000000000000000000000000000000000054155 . . .

real numbers is evil. Let me explain.

Probability Generating Functions

Theorem 1: Let ab(n) be the probability that a uniformly-at-random string of members of

{0, 1, . . . , b − 1} that definitely starts with a non-zero entry, has one of its partial sums equal

to n. We have the following generating function, let’s call it hb(x):

hb(x) :=

∞∑
n=0

ab(n)xn = 1 +
x(1− xb−1)

(b− 1)(1− x)
+

(
−1 + xb−1

)2
x2

(−bx+ xb + b− 1) (b− 1) (1− x)
.

In fact we have more generally:

Theorem 2: Let Ab(n, k) be the probability that a random real number in base b has its k-th

partial sum equal to n (for the first time). We have the following bivariate generating function,

let’s call it Hb(x, t):

Hb(x, t) :=

∞∑
n=0

∞∑
k=0

Ab(n, k)xn tk = 1 +
x(1− xb−1)

(b− 1)(1− x)
t+

(
1− xb−1

)2
x2t2

(t xb − bx+ b− t) (b− 1) (1− x)
.

Proof: The probability generating function of a single digit (assuming a fair die) is

1

b
·
b−1∑
i=0

xi =
1− xb

b(1− x)
.

By fiat, the first digit is non-zero, so the probability generating function of the very first digit is:

x+ x2 + . . .+ xb−1

b− 1
=

x(1− xb−1)

(b− 1)(1− x)
.

If k is the location where, for the first time, the partial sum of the (uniformly-at-random) string

of members from {0, 1, . . . , b− 1} equals n, that digit must be non-zero. But a-priori 0 is allowed,

so the probability generating function for that kth digit is:
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x+ x2 + . . .+ xb−1

b
=
x(1− xb−1)

b (1− x)
.

Hence the probability generating function that the k-th partial sum would equal to n for the first

time is
x(1− xb−1)

(b− 1) (1− x)
·
(

1− xb

b(1− x)

)k−2
x(1− xb−1)

b(1− x)
.

Hence the desired bivariate probability generating function is

Hb(x, t) = 1 +
x(1− xb−1)

(b− 1)(1− x)
t +

∞∑
k=2

x(1− xb−1)

(b− 1) (1− x)
·
(

1− xb

b(1− x)

)k−2
x(1− xb−1)

b (1− x)
tk

= 1 +
x(1− xb−1)

(b− 1)(1− x)
t + t2

x(1− xb−1)

(b− 1) (1− x)

(
1− 1− xb

b(1− x)
t

)−1
x(1− xb−1)

b (1− x)

= 1 +
x(1− xb−1)

(b− 1)(1− x)
t+

(
1− xb−1

)2
x2t2

(t xb − bx+ b− t) (b− 1) (1− x)
.

Plugging-in t = 1 in Theorem 2 gives Theorem 1.

This is implemented in procedures Gxr(x,r) and Gxtr(x,t,r) in the Maple package Hodes.txt .

In particular, for base 10, we have that the probability that a random real number would have one

of its partial sums equal to 666 is the coefficient of x666 in the Maclaurin expansion of

− 9

x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x− 9
,

that happens to be the number mentioned above.

Automatic Generation of moments

We are interested in the random variable ‘evil-location’ in the sample space of all n-evil numbers in

base b. Using partial fractions and Maple, one can obtain very precise asymptotic expressions not

only for the (conditional on being evil) expectation, and variance, but as many moments as one

desires (we went up to 16-th, but one can easily go further). In order to get the generating function

of the i-th moment, Maple computed, (t d
dt )

iHb(x, t)|t=1, a certain rational function of x whose

denominator can be factored as (1−x)i+1Q(x) where all the roots of Q(x) have absolute value larger

than 1. Then we (or rather Maple) converted it to partial fractions using convert(f,parfrac),

and then extracted the coefficient of xn in the Maclaurin expansion, ignoring the exponentially

decaying terms. Once we had the moments, we got the central moments, E[(X − µ)i], once again

thanks to Maple. From this, in turn, one can get the scaled moments, take the limit, and verify

asymptotic normality for as many moments as desired.

We have
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Theorem 3:

(i) The expected evil-location of a base b random n-evil real number is

2

b− 1
· n +

b− 5

3(b− 1)
+ O(αn

b ) ,

where 0 < αb < 1.

(When b = 10 and n = 666 we get 2
9 ·666+ 10

27 = 148.1851852 . . .. This differs by 8.054743192×10−62

from the exact value!)

(ii) The variance of the evil-location of a base b random n-evil real number is

2(b+ 1)

3 (b− 1)2
· n +

2b2 − 14b+ 2

9 (b− 1)2
+ O(αn

b ) .

(iii) The third central moment of the evil-location of a base b random n-evil real number is

2 (b+ 1)
2

3 (b− 1)
3 · n+

2 (b+ 1)
(
11b2 − 95b+ 11

)
135 (b− 1)

3 +O(αn
b ) .

It follows that the skewness (scaled central third moment) tends to 0 as n goes to infinity.

(iv) The fourth central moment of the evil-location of a base b random n-evil real number is

4 (b+ 1)
2

3 (b− 1)
4 · n

2 +
2 (b+ 1)

(
13b2 − 30b+ 13

)
15 (b− 1)

4 · n+
2
(
17b2 − 11b+ 17

) (
b2 − 10b+ 1

)
135 (b− 1)

4 +O(αn
b ) .

It follows that the kurtosis (scaled central fourth moment) tends to 3 as n goes to infinity.

(v) The fifth central moment of the evil-location of a base b random n-evil real number is

40 (b+ 1)
3

9 (b− 1)
5 ·n

2+
10
(
31b2 − 118b+ 31

)
(b+ 1)

2

81 (b− 1)
5 ·n+

2 (b+ 1)
(
293b4 − 4291b3 + 7356b2 − 4291b+ 293

)
1701 (b− 1)

5 +O(αn
b ) .

It follows that the scaled central fifth moment tends to 0 as n goes to infinity.

For the remaining central moments up to the 16-th see the output file:

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oHodes6.txt .

We are happy to report that the limits of the scaled moments approach those of the Gaussian distri-

bution, hence ‘location of evil-location’ over random evil numbers (in any base!) is asymptotically

normal (at least up to the 16-th moment).
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Lots and Lots of Evil Numbers

It is universally believed, but no one has any clue how to prove it, that every naturally occurring

irrational real number, like
√

2, π, e, and of course, the golden ratio, are normal. This means

that they behave, statistically, like random real numbers. The only currently proved normal real

numbers are the (base-dependent) Champernowne’s constant, and the non-computable Chaitin

constants (see [W]).

Assuming the normality hypothesis, we should expect that the percentage of evil numbers among

the first 100000 prime multiples of π should be close to %20, and the expected evil-location close

to 148.185. This turned out to be true. The output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oHodes7b.txt, lists which primes p,

amongst the first 100000, (from 2 to 1299709), are such that p · π is evil, along with their re-

spective evil locations. We found out that .2010500000 of them are evil, and the average of their

evil-locations is 148.6589406.

For numbers of the form π
√
x, for 1 ≤ x ≤ 10000 the ratio is .2045000000, see the output file:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oHodes2.txt .

We also explored other bases, see the front of this article:

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hodes.html ,

for a few more output files, but you are welcome to explore your own favorite numbers, once you

downloaded Hodes.txt .
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