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Abstract: A Maple package HISTABRUT (available from http://www.math.rutgers.edu/~zeilberg/tokhniot/HISTABRUT)
is presented and briefly described. It uses the polynomial ansatz to discover (often fully rigorously,
but in some cases only semi-rigorously (yet rigorizably!)) explicit asymptotic formulas for the mo-
ments of uni-variate and, more impressively, bi-variate, discrete probability random variables. It
would be hopefully extended, in the future, to multi-variate random variables.

Many sequences of discrete random variables (e.g. tossing a (fair or loaded) coin n times, and keep-
ing track of the number of Heads minus the number of Tails) are asymptotically normal. In [Z1],
I introduced and described Maple packages, CLT and AsymptoticMoments, that empirically-yet-
rigorously prove asymptotic normality for a wide class of sequences of discrete random variables.
They used the method of moments. Furthermore, they are able to prove much stronger theo-
rems than mere “asymptotic normality” by finding the asymptotics (to any desired order!) of the
(normalized) moments, rather than only the leading terms (that should be those of the normal
distribution e−x2/2/

√
2π, namely 1 · 3 · 5 · · · (2r − 1) for the even 2r-th moment, and 0 for the odd

moments).

But not all discrete probability random variables are asymptotically normal! For example, the
number of times that your current capital is positive, upon tossing a fair coin n times and winning a
dollar if it is Heads and losing a dollar it is Tails, that converges to Paul Lévy’s arcsine distribution
(see [Z2]), and the other random variables considered by Feller (see [Z3]). Another intriguing
random variable is the duration of a gambler’s ruin considered in [Z4].

The much larger Maple package HISTABRUT available from

http://www.math.rutgers.edu/~zeilberg/tokhniot/HISTABRUT

can handle any sequence of discrete probability distributions, that the users have to program
themselves. There are quite a few ones pre-programmed, (type EzraPGF(); in the Maple package
HISTABRUT for a list). It can also sketch the limiting distributions, using procedure plotDist (see
the on-line help).

Another new feature is that it can handle directly sequences of probability distributions defined
in terms of rational generating functions, R(t, s), where the coefficient of sn in the power-series
expansion of R(t, s) in terms of s is the probability generating function (in t) for a typical memebr
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of a sequence of random variables parametrized by n. For example, for tossing a fair coin n times
R(t, s) = 1/(1− s(t + 1/t)/2). Recall that the Goulden-Jackson[GJ] method (beautifully exposited
and extended in [NZ]), and also included in HISTABRUT, outputs such rational functions for the
random variable “number of occurrences of a prescribed (consecutive) subword”. First HISTABRUT
quickly and effortlessly computes explicit (symbolic) expressions for the mean and variance. This
is no big deal, and even you, my dear human readers, can probably do it in many cases. Having
done this easy task, HISTABRUT goes on and computes the (normalized) even and odd (2r-th and
(2r + 1)-th respectively), to any desired order, as expressions in both n and r. Now this is really
impressive, and a triumph to experimental mathematics. It first “just” guesses such expressions,
but a posteriori, just by (fully rigorous!) “hand-waving” justifies its guesses, by saying that checking
a certain number of special cases suffices to prove the conjectured explicit formulas rigoroulsy. The
justification is that at the end of the day, everything boils down to polynomial identities, and
we all know that two polynomials of degree ≤ d are identically equal if they coincide in d + 1
different values. In particular it, in any given case, rigorously reproves the well-known fact that
the distribution is asymptotically normal, but in addition supplies much more information, by
outputting higher-order asymptotics.

But the most salient new feature is the handling of sequences of bi-variate discrete random variables,
for example the number of occurrences of two different words as (consecutive) subwords. Here it
only gives polynomial expressions, in n, for the (r, s)-mixed moments, for r, s ≤ R, and R is
a numeric positive integer inputted by the user, but is unable (yet) to find general expressions in
terms of r and s. Here, too, the Goulden-Jackson method, that is built-in, supplies lots of examples.

Whenever the sequence of bivariate discrete probability distributions happens to be asymptoically
independently normal, procedure AnalyseMoms2 can find explicit expressions, in n, of course, but
also in both r, and s, for the asymptotic order, to any desired order, for the normalized mixed (r, s)
moments. [More precisely, it finds four distinct expressions for the (2r, 2s), (2r+1, 2s), (2r, 2s+1),
and (2r + 1, 2s + 1) mixed moments.]

Sample input and output

The “front” of the present article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/histabrut.html

has numerous sample input and output files. The readers are welcome to edit the input files in
order to produce their own output.

Future Directions

Procedure AnalyseMoms2 (and the verbose version AnalyseMoms2V) can only handle sequences of
bivariate discrete distributions that are asymptotically independently normal. It would be nice to
extend it to pairs of random variables that are non-independently asymptotically normal. This
would first require finding the asymptotic correlation (already done!), and then finding expressions
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for the mixed moments for the limiting continuous bi-variate distributions exp(−x2/2−y2/2+bxy)
where c = b/(1− b2) is the limiting correlation coefficient. These are all things that I know how to
teach the computer how to do, but I currently don’t have time.

Another worthwhile extension is to consider tri-variate, quad-variate, and in general, multi-variate
sequences of discrete probability distributions.
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