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Preamble

Let p(n) be the number of integer partitions of n. Euler famously proved that

∞∑
n=0

p(n)qn =
∞∏

i=1

1
1− qi

.

Srinivasa Ramanujan famously discovered (by glancing at a table of p(n) for 1 ≤ n ≤ 200, computed
by the analytic machine, Major Percy Alexander MacMahon’s head) the three congruences

p(5m+ 4) ≡ 0 (mod 5) ,

p(7m+ 5) ≡ 0 (mod 7) ,

p(11m+ 6) ≡ 0 (mod 11) .

The first two are really easy, and the proofs that G.H. Hardy chose to present in his classic book
“Ramanujan” ([Ha], pp. 87-88), slightly streamlined, go as follows.

First recall the (purely elementary and shaloshable) identities of Euler and Jacobi :

E(q) =
∞∏

i=1

(1− qi) =
∞∑

n=−∞
(−1)nq(3n2+n)/2 , and

E(q)3 =
∞∑

n=0

(−1)n(2n+ 1)q(n
2+n)/2 .

Also recall the obvious fact (but extremely useful [e.g. the AKS algorithm!] ), that follows from
the binomial theorem, that for every prime p, and any polynomial, or formal power series, f(q),
f(q)p ≡ f(qp) (mod p) . In particular E(q)p ≡ E(qp) (mod p) .

p(5n+4) is divisible by 5

Since {(n2 + n)/2 mod 5 ; 0 ≤ n ≤ 4 , 2n+ 1 6≡ 0 (mod 5)} = {0, 1}, we have:

E(q)3 = J0 + J1 ,

where Ji consists of those terms in which the power of q is congruent to i modulo 5. Now

∞∑
n=0

p(n)qn = E(q)−1 =
(E(q)3)3

E(q)10
=

(E(q)3)3

(E(q)5)2
≡ (J0 + J1)3

E(q5)2
(mod 5) ,
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and only powers congruent to 0, 1, 2, 3 modulo 5 show up, and hence the coefficient of q5n+4 is
always 0 modulo 5.

p(7n+4) is divisible by 7

Since {(n2 + n)/2 mod 7 ; 0 ≤ n ≤ 6 , 2n+ 1 6≡ 0 (mod 7)} = {0, 1, 3}, we have:

E(q)3 = J0 + J1 + J3 ,

where Ji consists of those terms in which the power of q is congruent to i modulo 7. Now

∞∑
n=0

p(n)qn = E(q)−1 =
(E(q)3)2

E(q)7
≡ (J0 + J1 + J3)2

E(q7)
(mod 7) ,

and none of the powers congruent to 5 modulo 7 show up, and hence the coefficient of q7n+5 is
always 0 modulo 5.

At the bottom of page 88 of Hardy’s above-mentioned classic “Ramanujan”[Ha], he states

“There does not seem to be an equally simple proof that p(11n+ 6) is divisible by 11”.

Over the years there were many proofs, but none as simple and elementary and, most impor-
tantly, beautiful! as the one recently found by Michael Hirschhorn [Hi].

Michael Hirschhorn’s proof for p(11n+6)

The proof in [Hi] goes like this. It starts the same way:

E(q)3 ≡ J0 + J1 + J3 + J6 + J10 (mod 11) ,

where Ji consists of those terms in which the power of q is congruent to i modulo 11. Now

∞∑
n=0

p(n)qn = E(q)−1 =
(E(q)3)7

E(q)22
≡ (J0 + J1 + J3 + J6 + J10)7

E(q11)2
(mod 11) .

Alas, now the part consisting of the powers that are congruent to 6 modulo 11 in the polynomial
(J0 + J1 + J3 + J6 + J10)7 (mod 11) is not identically zero modulo 11, but a certain polynomial
of degree 7 in {J0, J1, J3, J6, J10}, (over GF (11)) let’s call it P .

But we also have
E(q) = E0 + E1 + E2 + E4 + E5 + E7

where Ei consists of those terms in which the power of q is congruent to i modulo 11, and

(E(q)3)4 = E(q)12 = E(q)11E(q) ≡ E(q11)E(q) (mod 11) ,

so

(J0+J1+J3+J6+J10)4 ≡ E(q)12 (mod 11) ≡ E(q11)(E0+E1+E2+E4+E5+E7) (mod 11) .
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By expanding the left side and extracting the complementary powers (mod 11) ( {3, 6, 8, 9, 10}),
we get five polynomials of degree 4, let’s call them P3, P6, P8, P9, P10. Then we ask our beloved
computer to find five polynomials of degree 3, (in the variables {J0, J1, J3, J6, J10}), let’s call them
Q3, Q6, Q8, Q9, Q10, such that

P ≡ Q3P3 +Q6P6 +Q8P8 +Q9P9 +Q10P10 (mod 11) .

Since it succeeded (a priori there was no guarantee!), we are done!! Quod Erat Demonstratum.

See the output file http://www.math.rutgers.edu/~zeilberg/tokhniot/oHIRSCHHORN1v, that
contains the above three proofs, (and four other ones!), that was generated, by running HIRSCHHORN,
in three seconds!

Generalization

Let’s consider, more generally,

∞∑
n=0

p−a(n)qn =
∞∏

i=1

1
(1− qi)a

.

(Note that p−1(n) = p(n) and p24(n) = τ(n− 1), where τ(n) is Ramanujan’s τ -function).

Now let’s do an exchaustive computer search for congruences of the form

p−a(Pn+ r) ≡ 0 (mod P ) ,

for primes P ≤ 101, and 1 ≤ a ≤ 50.

[[1, 4, 5], [1, 5, 7], [1, 6, 11], [2, 2, 5], [2, 3, 5], [2, 4, 5], [3, 7, 11],

[3, 15, 17], [5, 8, 11], [5, 5, 23], [7, 9, 19], [9, 17, 19], [9, 9, 23],

[21, 42, 47]]

By pure guessing, our beloved servant, Shalosh B. Ekhad, discovered the following 14 successful
triples (rediscovering, for a = 1, the original three Ramanujan congruences).

[a, r, P ] ∈ {[[1, 4, 5], [1, 5, 7], [1, 6, 11],

[2, 2, 5], [2, 3, 5], [2, 4, 5]

[3, 7, 11], [3, 15, 17],

[5, 8, 11], [5, 5, 23],
[7, 9, 19],
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[9, 17, 19], [9, 9, 23],

[21, 42, 47]} .

Silviu Radu [R2] kindly showed us how to deduce these (except for the last two, that we are sure
can be done just as easily) from his powerful algorithm.

But it is still nice to have a purely elementary proof, in the style of Hirschhorn. This is implemented
in the Maple package

http://www.math.rutgers.edu/~zeilberg/tokhniot/HIRSCHHORN .

For primes up to 11 it works in a few seconds, alas, a naive implementation of Hirschhorn’s method,
using “undetermined coefficients” runs ouf of memory.

Luckily we have Gröbner Bases and the Buchberger algorithm. The question boils down to proving
that P belongs to the radical of the ideal generated by the Pi-s. Even here things run out of
time and memory (in Maple), but since we are working over GF (p), by getting sufficiently many
specializations, it is possible to prove ideal memberships for many special cases. Then we can either
do all possible pr specializations of freezing (any) r of the variables {J [i]}, or a semi-rigorous proof
if we do a small random selection.

Since Radu[R1] has his powerful algorithm, we didn’t bother to finish this up, but we know that it
is possible to always try to do it. Of course, it is possible, but unlikely, that some congruences are
not provable by Hirschhorn’s elementary approach. So let us conclude with a

Meta Conjecture: Any Ramanujan-type congruence for so-called modular forms, that Radu[R1]
famously proved is always doable with his powerful algorithm, that uses the deep theory of modular
forms and functions, can also be done by only using Hirschhorn’s elementary approach as extended
in this article, together with the purely elementary Buchberger algorithm over finite fields.

Readers are welcome to see the front of this article for sample input and output.

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hirschhorn.html .

Acknowledgement: We are grateful to Lev Borisov for insightful advice, and to Silviu Radu for
permission to post [R2] and for useful discussion.
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