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Abstract

We extract ideas implicit in Matiyasevich’s (negative) resolution of Hilbert’s tenth
problem, to construct many non-trivial infinite families for which we can not just
decide that they have solutions, but in fact explicitly construct all the solutions. We
can also come up with many families for which we can prove that no solutions exist.

1 Preface
In 1970, 23-year-old Yuri Matiyasevich, standing on the shoulders of Julia Robinson, Mar-
tin Davis, and Hilary Putnam, shocked the world of mathematics by showing that David
Hilbert’s dream of finding an algorithm that inputs any polynomial

P (x1, . . . , xn)

with integer coefficients, and outputs true or false if P = 0 has, or does not have, solutions
in integers, can never come to be.

Of course, for specfic equations, and even, many specific infinite families, one can
often decide, but there is no magic bullet that, can decide all of them.

For example, Pythagoras got very upset when Hippasus of Metapontum discovered
that the diophantine equation

x2 − 2y2 = 0 ,

has no solution, and Hippasus (probably) gave a fully rigorous proof (not the usual one
but a geometrical version of the reduction formula if (x, y) x > y > 0 is a solution so is
(y, 2x − y and since (1, 0) is not a solution qed. Going backwards, using the fact that if
(x, y) is a solution of Pell’s equation

x2 − 2y2 = ±1
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then so is (x + 2y, x + y), we can prove that there are infinitely many solutions. A little
more effort will show that these are the only ones. (see [Z]).

Much harder is the fact proved by Sir Andrew Wiles [W], that for every n > 2 the
diophantine equation

xn + yn = zn ,

has no solution.
On the positive side, Noam Elkies [E] famously proved that

A4 +B4 + C4 = D4 ,

has infinitely many solutions.
Wouldn’t it be nice to be able to manufacture, at will, many examples of diophantine

equations for which we can explicitly construct all solutions?
There is a cheap way to do this. As most of us know, the triple

a = A2 −B2 , , b = 2AB , c = A2 +B2 ,

satisfies
a2 + b2 = c2

A little more challenging is to prove that all solutions of a2 + b2 = c2 with gcd(a, b) = 1
are of this form. But this is true, and the same idea applies more generally.

Take any m+ 1 polynomials in m variables with integer coefficients

Pi(a1, . . . , am) , 1 ≤ i ≤ m+ 1

and define
Xi = Pi(a1, . . . , am) , 1 ≤ i ≤ m+ 1 ,

using, e.g Gröbner bases (the Buchberger algorithm) we can eliminate a1, . . . , am and get
a polynomial equation (with integer coefficients)

Q(X1, . . . , Xm) = 0 ,

that has a parametric solution as above. Alas, in general this leads to monster equations
and unlike the case with Pythagorean triples, it is not clear that there aren’t other solutions.

So it would be nice to be able to generate, in a systematic way, many examples of
simple diophantine equations for which we know infinitely many solutions, and to be
able to prove that these are all of them. It would also be nice to manufacture not too
complicated, but non-trivial, diophantine equations for which we can conclusively prove
that there aren’t any solutions.
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2 Diophantine equations from recurrences
In Matiyasevich’s proof (we use the versions in [JM] and [M]) a central role is played by
Pell’s equation and the fact ([M], pp. 19-20) that two consecutive terms x = ab(n), y =
ab(n+ 1) of the sequence of integers defined by the second-order linear recurrence

ab(0) = 0 , ab(1) = 1 , ab(n+ 2) = bab(n+ 1)− ab(n) ,

satisfy the diophantine equation

x2 − bxy + y2 = 1 ,

and conversely if x > y satisfies it, then there must be an n such that x = ab(n + 1),
y = ab(n). This gave us the idea to consider higher-order recurrences.

If Fn is the nth Fibonacci number, then taking the determinant of the well-known
matrix identity [

Fn+1 Fn

Fn Fn−1

]
=

[
1 1
1 0

]n
,

yields Cassini’s identity Fn+1Fn−1 − F 2
n = (−1)n. If we square this and apply the Fi-

bonacci recurrence, then we obtain P (Fn−1, Fn) = 1 for some polynomial P . From
another perspective, starting with the Fibonacci numbers we created a polynomial dio-
phantine equation P (x, y) = 1 with infinitely many solutions. Our goal is to repeat this
for a wider class of recurrences.

Consider the linear recurrence

(1) a(n) = c1a(n− 1) + · · ·+ cda(n− d).

Our recipe has two parts. First, the matrix

B =


c1 c2 · · · cd
1 0 · · · 0
0 1 · · · 0

· · ·
0 0 · · · 1


satisfies the “forward identity”

a(n+ 1)
a(n)

...
a(n− d+ 2)

 = B


a(n)

a(n− 1)
...

a(n− d+ 1)


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for any sequence which satisfies (1). Second, (1) has d “fundamental solutions” which
form a basis for all solutions. They are the solutions whose initial conditions are all zero
except for a single entry, which is instead one. By luck, the columns of the identity matrix
are exactly the initial conditions of these fundamental solutions. If we call the fundamental
solutions e0(n), e1(n), . . . , ed−1(n), then

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0

· · ·
0 0 0 · · · 1

 =


e0(d− 1) e1(d− 1) · · · ed−1(d− 1)
e0(d− 2) e1(d− 2) · · · ed−1(d− 2)
e0(d− 3) e1(d− 3) · · · ed−1(d− 3)

· · ·
e0(0) e1(0) · · · ed−1(0)

 .

This implies a relation between Bn and the fundamental solutions:

(2) Bn = BnI =


e0(n+ d− 1) e1(n+ d− 1) · · · ed−1(n+ d− 1)
e0(n+ d− 2) e1(n+ d− 2) · · · ed−1(n+ d− 2)
e0(n+ d− 3) e1(n+ d− 3) · · · ed−1(n+ d− 3)

· · ·
e0(n) e1(n) · · · ed−1(n)

 .

From the elementary theory of difference equations, every solution to (1)—including the
fundamental ones—can be expressed as a linear combination of the sequences e0(n),
e0(n + 1), . . . , e0(n + d − 1). Therefore every entry in the right-hand side of (2) is
actually a linear combination of shifts of e0(n). By taking determinants in (2) it follows
that

P (e0(n), e0(n+ 1), . . . , e0(n+ d− 1)) = (detB)n

for some polynomial P . Laplace expansion implies detB = (−1)dcd, so setting cd =
(−1)d makes the right-hand side 1.

The previous considerations lead to the following proposition.

Proposition 1 For any integers c1, c2, . . . , cd−1, there is a nonzero polynomial P (x1, x2, . . . , xd)
such that the diophantine equation

P (x1, x2, . . . , xd) = 1

has infinitely many solutions. In particular, the points (a(n), a(n+ 1), . . . , a(n+ d− 1))
are solutions, where a(n) satisfies

a(n) =
d−1∑
k=1

cka(n− k) + (−1)da(n− d)

and has initial conditions 0, 0, . . . , 0, 1.
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Our goal is to show that the diophantine equations in Proposition 1 are sometimes
solved by only the recurrence solutions. This goal is too lofty in general, but we have
arguments which apply to an infinite family of recurrences, and one detailed case study
concerning the Tribonacci numbers.

3 Tribonacci numbers
We begin with the Tribonacci numbers as a detailed example. The main idea is to show
that all solutions to the associated diophantine equation are generated, in some sense, by
increasing solutions, and then to construct all increasing solutions.

Definition 1 Define the numbers Tn by

T0 = T1 = 0

T2 = 1

Tn = Tn−1 + Tn−2,

the polynomial PT by

PT (x, y, z) = x3 + 2x2y + x2z + 2xy2 − 2xyz − xz2 + 2y3 − 2yz2 + z3,

and the map RT by
RT (x, y, z) = (y, z, x+ y + z).

Note that PT is invariant under RT , i.e., PT ◦RT = PT .

Proposition 2 If PT (x, y, z) = 1 for integers (x, y, z), then (x, y, z) is the result of
repeatedly applying RT or its inverse to a nonnegative increasing solution. That is, there
exist integers 0 ≤ a ≤ b ≤ c and a positive integer n such that P (a, b, c) = 1 and (x, y, z)
is Rn

T (a, b, c) or R−n
T (a, b, c).

Proof Repeatedly applying RT to our initial point (x, y, z) produces a sequence
a(n) which satisfies

a(n) = a(n− 1) + a(n− 2) + a(n− 3)

with initial conditions (a(0), a(1), a(2)) = (x, y, z). Because PT is invariant under
RT we have PT (a(n), a(n + 1), a(n + 2)) = 1 for all n. The elementary theory
of difference equations implies a(n) ∼ c · αn where α = 1.8393 is the unique real
root of X3 −X2 −X − 1 and

c = α
(α2 − α− 1)a(0) + (α− 1)a(1) + a(2)

α2 + 2α + 3
.
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Note that c is real. If c < 0, then we eventually obtain a strictly negative
solution, which is impossible because PT (x, y, z) ≤ 0 if x, y, z ≤ 0. If c = 0
then (α2 − α − 1)a(0) + (α − 1)a(1) + a(2) = 0, and this is impossible because
{1, α, α2} is linearly independent over the rationals. The remaining possibility is
c > 0, which implies that we eventually have 0 < a(n) < a(n + 1) < a(n + 2),
and we get back to (x, y, z) by applying the inverse map R−1

T . ■

Proposition 3 If PT (x, y, z) = 1 for integers 0 ≤ x ≤ y ≤ z, then (x, y, z) =
(Tn, Tn+1, Tn+2) for some integer n ≥ 0.

Proof The map R−1
T (x, y, z) = (z−x−y, x, y) takes solutions to other solutions.

Note that if 0 ≤ z − x − y ≤ x, then the new solution is also nonegative and
increasing, and in fact strictly smaller unless x = y = 0. (If x = y = 0 then z = 1
is the unique solution.) We will show that 0 ≤ z − x − y ≤ x for all increasing
solutions with sufficiently large z.

If we divide both sides of the equation PT (x, y, z) = 1 by z3, and make the
change of variables (t, s) = (x/z, y/z), then we obtain

(3) 2s3 + 2s2t+ 2st2 + t3 − 2st+ t2 − 2s− t+ 1 =
1

z3
.

Call the left-hand side of this equation f(s, t) and note that it is a cubic defined
on the unit square. It is a routine calculus exercise to show that the minimum of
f(s, t) on the region 1− t− s < 0 is

398− 68
√
34

27
.

Therefore we cannot have both (3) and 1− t− s < 0 for

z >

(
398− 68

√
34

27

)−1/3

= 2.6235.

It follows that 0 ≤ z − x − y for all increasing solutions to PT (x, y, z) = 1 with
z ≥ 3. By an analogous argument on the region 1 − t − s > t, all increasing
solutions to PT (x, y, z) = 1 with z ≥ 5 satisfy z − x− y ≤ x.

Repeatedly applying the “backwards” map R−1
T produces smaller, nonnegative,

increasing solutions as long as z ≥ 5, and so this process terminates at a solution
with 0 ≤ x ≤ y ≤ z < 5. It is simple to check that all such solutions return to
the point (0, 0, 1) under the map R−1

T , and so all increasing nonnegative solutions
come from applying the “forward” map RT to (0, 0, 1). This produces exactly the
Tribonacci numbers. ■

6



See Figure ?? for a visual representation of the maps and regions in Proposition 3.

Theorem 1 If PT (x, y, z) = 1 for integers x, y, z, then (x, y, z) = (Tn, Tn+1, Tn+2) for
some integer n.

Proof By the previous two propositions, every solution comes from applying the
maps (x, y, z) 7→ (y, z, x+ y + z) and (x, y, z) 7→ (z − x− y, x, y) to the solution
(0, 0, 1), which produces exactly the Tribonacci numbers with positive and negative
indices. ■

4 Uniqueness in general
The arguments from the previous section carry over almost verbatim to the general third-
order recurrence. The main difficulty is in establishing the minimum of the analogous
cubic (3). For any specific recurrence it is completely routine to check whether the proof
of Proposition 3 works, but Proposition 5 gives a weaker statement about an infinite family.

Definition 2 For any positive integers a and b, define the polynomial Pab(x, y, z) as

a2y2z+abxyz+aby3+b2xy2+ax2z+axy2−2ayz2+2bx2y−bxz2−by2z+x3−3xyz+y3+z3

Proposition 4 Let a and b be positive integers such that X3−aX2−bX−1 is irreducible
over Q and has a single largest root which is real and greater than 1. Then all integer
solutions to Pab(x, y, z) = 1 are generated by applying the map (x, y, z) 7→ (z − ay −
bx, x, y) or its inverse to a nonnegative, increasing solution.

Proof The argument is the same as in Proposition 2. The irreducibility of X3 −
aX2−bX−1, with largest root α > 1, implies the linear independence of {1, α, α2}
over the rationals and gives the correct asymptotics. ■

Proposition 5 Fix positive integers a and b and consider the recurrence

(4) u(n) = au(n− 1) + bu(n− 2) + u(n− 3).

If a is sufficiently large relative to b, then all solutions 0 ≤ x ≤ y ≤ z to the diophantine
equation Pab(x, y, z) = 1 are generated by applying (4) to finitely many solutions.

It should be noted that while the following proof is non-constructive, the method is
not. Carrying out the proof for any specific integers a and b will determine an exact bound
under which the finitely many initial conditions can be found.
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Proof The polynomial Pab(x, y, z) is invariant under the map

(5) (x, y, z) 7→ (z − ay − bx, x, y),

so it takes solutions to solutions. In particular, the new solution is strictly closer to
the origin unless x = y = 0 (which yields the unique solution z = 1). We will
show that the new solution is also nonnegative and increasing for sufficiently large
z.

If we divide both sides of Pab(x, y, z) = 1 by z3 and make the change of vari-
ables (t, s) = (x/z, y/z), then we obtain fab(t, s) = z−3 where fab is a cubic in
t and s on the unit square. Because fab is a cubic, it is possible to exactly com-
pute its critical points on the unit square, as well as the critical points of boundary
functions such as fab(0, s) and fab(1, s). If we treat b as a constant and perform
asymptotic expansions as a → ∞ of these critical points, it turns out that the min-
imum of fab on the region {1 − as − bt < 0} ∪ {1 − as − bt > t} occurs on the
line 1− as− bt = 0, and it equals

1

a6
− b2

4a7
− 9b

2a8
+O(a−9).

So fab(t, s) = z−3 fails if

(6) z > a2 +
b2

12
a+

3b

2
+

b4

72
+O(a−1).

It follows that 0 < 1 − as − bt < t, also known as 0 < z − ay − bx < x for any
solution 0 ≤ x ≤ y ≤ z with sufficiently large z. We may therefore iterate (5) on
such a solution until we reach one where z is below the bound implied by (6), and
there are only finitely many of these. ■

Theorem 2 Let a and b be positive integers such that

1. X3 − aX2 − bX − 1 is irreducible over the rationals and has a single largest root
which is real and greater than 1; and

2. a is sufficiently large relative to b (in the non-constructive sense of proposition 4).

Then all integer solutions to Pab(x, y, z) = 1 are generated by applying (4) forwards or
backwards to finitely many initial solutions.

Note that the first condition is not very restrictive. The cubic X3 − aX2 − bX − 1 has
a rational root only if b = a+ 2.
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5 Examples
A single family The characteristic equation

X3 − 10X2 − 3X − 1

leads to the diophantine equation

x3 + 6x2y + 10x2z + 19xy2 + 27xyz − 3xz2 + 31y3 + 97y2z − 20yz2 + z3 = 1.

Theorem 2 (along with explicit arguments from Proposition 5) shows that all solutions to
this equation are generated by applying the maps (x, y, z) 7→ (y, z, 10z + 3y + x) and
(x, y, z) 7→ (z − 10y − 3x, x, y) to the initial solution (0, 0, 1).

Multiple families The characteristic equation

X3 − 2X2 − 3X − 1

leads to the diophantine equation

x3 + 6x2y + 2x2z + 11xy2 + 3xyz − 3xz2 + 7y3 + y2z − 4yz2 + z3 = 1.

Theorem 2 (along with explicit arguments from Proposition 5) shows that all solutions
to this equation are generated by applying the maps (x, y, z) 7→ (y, z, 3z + 2y + x) and
(x, y, z) 7→ (z − 3y − 2x, x, y) to the initial solutions

(0, 0, 1), (0, 1, 3), (0, 2, 7), (1, 1, 4).

A failure The characteristic equation

X3 −X2 − 3X − 1 = (X − 1)(X2 − 2X − 1)

corresponds to setting a = 1 and b = 3, which leads to the diophantine equation

x3 + 6x2y + x2z + 10xy2 − 3xz2 + 4y3 − 2y2z − 2yz2 + z3 = 1.

Our method fails here on two counts. First, the proof of Proposition 5 does not go through
(a = 1 is not big enough relative to b = 3). Second, this recurrence has degenerate integer
solutions like (−1)n which do not have the correct asymptotics.
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