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Creating decidable diophantine equations
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Dedicated to Yuri Matiyasevich, a modern day Diophantus.

Abstract

In 1974, 23-year-old Yuri Matiyasevich shattered Hilbert’s dream to find a universal algo-
rithm that would input an arbitrary polynomial of several variables with integer coefficients
and determine whether it has integer solutions. It used, in a very clever way, sequences that
satisfy second-order linear recurrences with integer coefficients. A side effect of his proof was
the construction of infinite families of Diophantine equations for which the existence of solutions
is decidable, the so-called Pell equations.

This was extended to higher-order (third and fourth) recurrences in a deep study by Matiya-
sevich’s student, Maxim Vsemirnov, using sophisticated algebraic number theory. In the
present, mostly expository, article, we revisit some of Vsemirnov’s results from a more ele-
mentary viewpoint, and supplement it with a Maple implementation that would enable anyone
to actually construct many families of decidable diophantine equations. Our method also can
construct such diophantine equations for which one can prove that no solutions exist.

1 Preface

A diophantine equation is an equation of the form P (x1, x2, . . . , xn) = 0 where P is an integer
coefficient polynomial, and we restrict the variables xk to be integers. The most famous diophantine
equation of all time is

x2 − 2y2 = 0.

Hippasus of Metapontum discovered that this equation has no solution in the positive integers
[Fri45]. Though Hippasus could not have phrased his argument completely rigorously, he might
have enjoyed something like this: Any solution (x, y) satisfies x > y > 0, and it is not hard to
check that (2y − x, x − y) is also a positive solution with a smaller second coordinate. (Note that
2y − x > x − y because x ≥ (3/2)y is impossible.) This is a contradiction, because it would imply
arbitrarily small positive integers.

Another equation where this kind of argument applies is Pell’s equation

x2 − 2y2 = ±1.

If (x, y) is a solution, then so is (x + 2y, x + y). A simple brute force search reveals the solution
(1, 1), and then this argument yields (3, 2), (7, 5), (17, 12), and so on. A little more effort will show
that all positive solutions come from repeatedly applying this map to (1, 1) [Zei14; Len02].
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The previous two examples covered cases where a diophantine equation had no solutions, and
one where it had infinitely many. But both had some subtle technical details that make it hard
to imagine generalizing them to other equations. In the early 1900’s, David Hilbert believed that
there should be an argument that does generalize to all diophantine equations. The tenth problem
on his famous 1900 list was to find it. But in 1970, 23-year-old Yuri Matiyasevich, standing on the
shoulders of Julia Robinson, Martin Davis, and Hilary Putnam, shocked the world of mathematics
by showing that Hilbert’s dream is impossible. There is no algorithm to determine whether an
integer coefficient polynomial has integer roots [DPR61; Mat93; Mat71].

Of course, for specfic equations, or even specific infinite families, one can often decide the
question. For example, Sir Andrew Wiles proved that

xn + yn = zn

has no positive integer solutions for n > 2, and Noam Elkies proved that

A4 +B4 + C4 = D4

has infinitely many solutions [Wil95; Elk88].
A key fact in Matiyasevich’s proof is that the solutions to the diophantine equation

x2 − bxy + y2 = 1, (1)

where x and y are variables and b is an integer “parameter,” are described by the second-order
linear recurrence

ab(0) = 0, ab(1) = 1

ab(n+ 2) = b · ab(n+ 1)− ab(n).

This is precise in the following sense: integers x > y satisfy (1) if and only if (x, y) = (ab(n+1), ab(n))
for some integer n ([Mat93, pp.19-20] and [JM91]). The first step towards this result begins with
the matrix identity

[

ab(n+ 1) −ab(n)
ab(n) −ab(n− 1)

]

=

[

b −1
1 0

]n

,

which is easily established by induction. Taking the determinant of both sides and applying ab(n)’s
defining recurrence shows that consecutive terms of ab(n) satisfy (1). The converse relies on some
slightly technical arguments.

From a high level, Matiyasevich showed that a certain family of second order recurrences were
“equivalent” to a certain family of diophantine equations. This was enough to resolve Hilbert’s
tenth problem, but it suggests a follow up question: What about higher order recurrences? This
question was brilliantly investigated by M. A. Vsemirnov, a student of Matiyasevich, in the late
1990’s [Vse98; Vse97]. Roughly speaking, Vsemirnov proved that only certain recurrences up to
order four can be equivalent to a diophantine equation, and he determined all such third order
recurrences. Vsemirnov’s techniques rely on sophisticated algebraic number theory. Here, we will
show an elementary, constructive approach which relies only on calculus and our computers.
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2 Diophantine equations from recurrences

Let us first describe the construction which takes us from recurrences to diophantine equations.
Consider the linear recurrence

a(n) = c1a(n− 1) + · · ·+ cda(n− d). (2)

Our recipe has two parts. First, the “companion matrix”

B =













c1 c2 · · · cd
1 0 · · · 0
0 1 · · · 0

· · ·
0 0 · · · 1 0













satisfies the forward identity










a(n+ 1)
a(n)
...

a(n− d+ 2)











= B











a(n)
a(n− 1)

...
a(n− d+ 1)











for any sequence which satisfies (2). Second, (2) has d “fundamental solutions” which form a
basis for all solutions [KP10, ch. 4]. They are the solutions whose initial conditions (the values
(a(0), a(1), . . . , a(d − 1))) are all zero except for a single entry, which is instead one. We will call
these solutions ek(n), and give them the following initial conditions:













1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0

· · ·
0 0 0 · · · 1













=













e0(d− 1) e1(d− 1) · · · ed−1(d− 1)
e0(d− 2) e1(d− 2) · · · ed−1(d− 2)
e0(d− 3) e1(d− 3) · · · ed−1(d− 3)

· · ·
e0(0) e1(0) · · · ed−1(0)













.

This implies the relation

Bn = BnI =













e0(n+ d− 1) e1(n+ d− 1) · · · ed−1(n+ d− 1)
e0(n+ d− 2) e1(n+ d− 2) · · · ed−1(n+ d− 2)
e0(n+ d− 3) e1(n+ d− 3) · · · ed−1(n+ d− 3)

· · ·
e0(n) e1(n) · · · ed−1(n)













. (3)

From the elementary theory of difference equations (again see [KP10, ch. 4]), every solution to
(2)—including the fundamental ones—can be expressed as a linear combination of the sequences
e0(n), e0(n+ 1), . . . , e0(n+ d− 1). Therefore every entry in the right-hand side of (3) is actually
a linear combination of shifts of e0(n). Taking determinants in (3) yields

P (e0(n), e0(n+ 1), . . . , e0(n+ d− 1)) = (detB)n

for some polynomial P , and Laplace expansion on the first row gives detB = (−1)d+1cd. If we take
cd = (−1)d+1 then the right-hand side is 1.

These considerations lead to the following proposition.
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Proposition 1. For any integers c1, c2, . . . , cd−1, not all zero, there is a nonzero polynomial
P (x1, x2, . . . , xd) such that the diophantine equation

P (x1, x2, . . . , xd) = 1

has infinitely many solutions. In particular, the points (a(n), a(n+1), . . . , a(n+d−1)) are solutions,
where a(n) satisfies

a(n) =
d−1
∑

k=1

cka(n− k) + (−1)d+1a(n− d)

and has initial conditions 0, 0, . . . , 0, 1.

This is roughly half of Matiyasevich’s proof characterizing solutions to (1). The next step is to
generalize the converse, and show that the diophantine equations in Proposition 1 are sometimes
solved by only the recurrence solutions. This goal is too lofty in general, but we have arguments
which apply to an infinite family of recurrences, and one detailed case study concerning the Tri-
bonacci numbers.

3 Tribonacci numbers

Definition 1. Define the numbers Tn by

T0 = T1 = 0

T2 = 1

Tn = Tn−1 + Tn−2 + Tn−3,

the polynomial PT by

PT (x, y, z) = x3 + 2x2y + x2z + 2xy2 − 2xyz − xz2 + 2y3 − 2yz2 + z3,

and the map RT by
RT (x, y, z) = (y, z, x+ y + z).

Note that PT is invariant under RT , i.e., PT ◦RT = PT .

Proposition 2. If PT (x, y, z) = 1 for integers (x, y, z), then (x, y, z) is the result of repeatedly
applying RT or its inverse to a nonnegative increasing solution. That is, there exist integers 0 ≤
a < b < c and a positive integer n such that PT (a, b, c) = 1 and (x, y, z) is Rn

T (a, b, c) or R
−n
T (a, b, c).

Proof. Repeatedly applying RT to our initial point (x, y, z) produces a sequence a(n) which satisfies

a(n) = a(n− 1) + a(n− 2) + a(n− 3)

with initial conditions (a(0), a(1), a(2)) = (x, y, z). Because PT is invariant under RT we have
PT (a(n), a(n + 1), a(n + 2)) = 1 for all n. The elementary theory of difference equations implies
a(n) ∼ c · αn where α ≈ 1.8393 is the unique real root of X3 −X2 −X − 1 and

c = α
(α2 − α− 1)a(0) + (α− 1)a(1) + a(2)

α2 + 2α+ 3
.
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Note that c is real. If c < 0, then we eventually obtain a strictly negative solution, which is
impossible because PT (x, y, z) ≤ 0 if x, y, z ≤ 0. If c = 0 then (α2−α−1)a(0)+(α−1)a(1)+a(2) = 0,
and this is impossible because {1, α, α2} is linearly independent over the rationals. (The minimal
polynomial is a cubic and irreducible overQ, so α is a degree three algebraic integer.) The remaining
possibility is c > 0, which implies that we eventually have 0 < a(n) < a(n+ 1) < a(n+ 2). We get
back to (x, y, z) by repeatedly applying the inverse map R−1

T .

Proposition 3. If PT (x, y, z) = 1 for integers 0 < x < y < z, then (x, y, z) = (Tn, Tn+1, Tn+2) for
some integer n ≥ 0.

Proof. The map R−1

T (x, y, z) = (z − x − y, x, y) takes solutions to other solutions. Note that if
0 < z− x− y < x, then the new solution is also positive and increasing, and in fact strictly smaller
in magnitude. We will show that 0 < z − x − y < x for all increasing solutions with sufficiently
large z.

If we divide both sides of the equation PT (x, y, z) = 1 by z3, and make the change of variables
(t, s) = (x/z, y/z), then we obtain

2s3 + 2s2t+ 2st2 + t3 − 2st+ t2 − 2s− t+ 1 =
1

z3
. (4)

Call the left-hand side of this equation f(s, t) and note that it is a cubic defined on the unit square.
It is a routine (computer-assisted) calculus exercise to show that the minimum of f(s, t) on the
region 1− t− s ≤ 0 is

398− 68
√
34

27
> 0.

Therefore we cannot have both (4) and 1− t− s ≤ 0 for

z >

(

398− 68
√
34

27

)

−1/3

≈ 2.6235.

It follows that 0 < z − x − y for all increasing solutions to PT (x, y, z) = 1 with z ≥ 3. By an
analogous argument on the region 1 − t − s ≥ t, all increasing solutions to PT (x, y, z) = 1 with
z ≥ 5 satisfy z − x− y < x.

Repeatedly applying the “backwards” map R−1

T produces smaller, positive, increasing solutions
as long as z ≥ 5, and so this process terminates at a solution with 0 < x < y < z < 5. It is
simple to check that all such solutions return to the point (0, 0, 1) under the map R−1

T , and so all
increasing positive solutions come from applying the “forward” map RT to (0, 0, 1). This produces
exactly the Tribonacci numbers.

See Figure 1 for a visual representation of the maps and regions in Proposition 3.

Theorem 1. If PT (x, y, z) = 1 for integers x, y, z, then (x, y, z) = (Tn, Tn+1, Tn+2) for some integer
n.

Proof. By the previous two propositions, every solution comes from applying the maps (x, y, z) 7→
(y, z, x+ y+ z) and (x, y, z) 7→ (z − x− y, x, y) to the solution (0, 0, 1), which produces exactly the
Tribonacci numbers with positive and negative indices.
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Figure 1: The map (x, y, z) 7→ (y, z, x+ y+ z) represented in the ts plane by its equivalent (t, s) 7→
(s/(s+ t+ 1), 1/(s+ t+ 1)). Left: The map restricted to the unit square, with the region {s+ t >
1} ∪ {s + 2t < 1} shaded. The unique critical point in the first quadrant of the left-hand side of
(4) is labeled by a black dot. Right: The map on a larger portion of the plane. The critical point
is an attractor for s+ t+ 1 > 0.

4 Uniqueness in general

The arguments from the previous section carry over almost verbatim to the general third-order
recurrence. The main difficulty is in establishing the minimum of the analogous cubic (4). For any
specific recurrence it is completely routine to check whether the proof of Proposition 3 works, but
Proposition 5 gives a weaker statement about an infinite family.

Definition 2. For any positive integers a and b, define the polynomial Pab(x, y, z) as

a2y2z + abxyz + aby3 + b2xy2 + ax2z + axy2 − 2ayz2 + 2bx2y − bxz2 − by2z + x3 − 3xyz + y3 + z3

Proposition 4. Let a and b be positive integers such that X3 − aX2 − bX − 1 is irreducible over
Q and has a single largest root which is real and greater than 1. Then all integer solutions to
Pab(x, y, z) = 1 are generated by applying the map (x, y, z) 7→ (z − ay − bx, x, y) or its inverse to a
positive, increasing solution.

Proof. The argument is the same as in Proposition 2. The irreducibility of X3 − aX2 − bX − 1,
with largest root α > 1, implies the linear independence of {1, α, α2} over the rationals and gives
the correct asymptotics.

Proposition 5. Fix positive integers a and b and consider the recurrence

u(n) = au(n− 1) + bu(n− 2) + u(n− 3). (5)

If a is sufficiently large relative to b, then all solutions 0 < x < y < z to the diophantine equation
Pab(x, y, z) = 1 are generated by applying (5) to finitely many solutions.
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It should be noted that while the following proof is non-constructive, themethod is not. Carrying
out the proof for any specific integers a and b will determine an exact bound under which the finitely
many initial conditions can be found.

Proof. The polynomial Pab(x, y, z) is invariant under the map

(x, y, z) 7→ (z − ay − bx, x, y), (6)

so it takes solutions to solutions. Note that

|(z − ay − bx, x, y)|2 − |(x, y, z)|2 = (ay + bx)(ay + bx− 2z) < 0

provided that the conditions x, y ≥ 0 and

ay + bx− 2z < 0 (7)

are satisfied, meaning that solutions are taken to smaller solutions in this case. We will show that,
given an increasing solution 0 ≤ x < y < z with sufficiently large z, condition (7) holds, and that
the new solution determined by (6) is also nonnegative, increasing and satisfies (7).

If we divide both sides of Pab(x, y, z) = 1 by z3 and make the change of variables (t, s) =
(x/z, y/z), then we obtain fab(t, s) = z−3 where fab is a cubic in t and s on the unit square. The
region that we wish to avoid is

Rab = {as+ bt ≥ 2} ∪ {1− as− bt ≤ 0} ∪ {1− as− bt ≥ t},

where we implicitly are restricting everything to the unit square. Note that the first set in the
union is contained in third set if b ≥ 1, so our region is really just

Rab = {1− as− bt ≤ 0} ∪ {1− as− bt ≥ t}.

Because fab is a cubic, it is possible to exactly compute its critical points on the unit square, as
well as the critical points of boundary functions such as fab(0, s) and fab(1, s). If we treat b as a
constant and perform asymptotic expansions as a → ∞ of these critical points, it turns out that
the minimum of fab on the region Rab occurs on the line 1− as− bt = 0, and it equals

1

a6
− b2

4a7
− 9b

2a8
+O(a−9).

So fab(t, s) = z−3 fails if

z > a2 +
b2

12
a+

3b

2
+

b4

72
+O(a−1). (8)

It follows that the inequalities

0 < 1− as− bt < t ⇐⇒ 0 < z − ay − bx < x

as+ bt < 2 ⇐⇒ ay + bx < 2z

hold for any solution 0 < x < y < z with sufficiently large z. We may therefore iterate (6) on such
a solution until we reach one where z is below the bound implied by (8), and there are only finitely
many of these.
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Theorem 2. Let a and b be positive integers such that

1. X3 − aX2 − bX − 1 is irreducible over the rationals and has a single largest root which is real
and greater than 1; and

2. a is sufficiently large relative to b (in the non-constructive sense of proposition 4).

Then all integer solutions to Pab(x, y, z) = 1 are generated by applying (5) forwards or backwards
to finitely many initial solutions.

Note that the first condition is not very restrictive. The cubic X3−aX2− bX− 1 has a rational
root (by the rational root test) only if b = a+ 2.

5 Examples

A single family The characteristic equation

X3 − 10X2 − 3X − 1

leads to the diophantine equation

x3 + 6x2y + 10x2z + 19xy2 + 27xyz − 3xz2 + 31y3 + 97y2z − 20yz2 + z3 = 1.

Theorem 2 (along with explicit arguments from Proposition 5) shows that all solutions to this
equation are generated by applying the maps (x, y, z) 7→ (y, z, 10z + 3y + x) and (x, y, z) 7→ (z −
10y − 3x, x, y) to the initial solution (0, 0, 1).

Multiple families The characteristic equation

X3 − 2X2 − 3X − 1

leads to the diophantine equation

x3 + 6x2y + 2x2z + 11xy2 + 3xyz − 3xz2 + 7y3 + y2z − 4yz2 + z3 = 1.

Theorem 2 (along with explicit arguments from Proposition 5) shows that all solutions to this
equation are generated by applying the maps (x, y, z) 7→ (y, z, 3z+2y+x) and (x, y, z) 7→ (z− 3y−
2x, x, y) to the initial solutions

(0, 0, 1), (0, 1, 3), (0, 2, 7), (1, 1, 4),

none of which can be obtained from any other.
See Figure 2 for a visual demonstration of these maps.

A failure The characteristic equation

X3 −X2 − 3X − 1 = (X − 1)(X2 − 2X − 1)

corresponds to setting a = 1 and b = 3, which leads to the diophantine equation

x3 + 6x2y + x2z + 10xy2 − 3xz2 + 4y3 − 2y2z − 2yz2 + z3 = 1.

Our method fails here on two counts. First, the proof of Proposition 5 does not go through (a = 1
is not big enough relative to b = 3). Second, this recurrence has degenerate integer solutions like
(−1)n which do not have the correct asymptotics.
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Figure 2: The map (x, y, z) 7→ (y, z, 3z + 2y + x) represented in the ts plane by its equivalent
(t, s) 7→ (s/(2s+ t+3), 1/(2s+ t+3)). Left: The map restricted to the unit square, with the region
{2s+ 3t ≥ 1} ∪ {2s+ 4t ≤ 1} shaded. The unique critical point in the first quadrant of the cubic
constructed in the proof of Proposition 5 with parameters (a, b) = (2, 3) is labeled by a black dot.
Right: The map on a larger portion of the plane.

6 Computer implementations

As mentioned before the proof of Proposition 5, most of our arguments here can be made effective
for any set of fixed parameters. The authors have written a Maple package, Hilbert10.txt, avail-
able at https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hilbert10.html.
Execute the command ezra(); to receive a help display.

To execute the proof of Proposition 5 on a specific recurrence, use the command allSolns([a,

b, c]). The procedure requires a list of length three with c = 1. This is slightly awkward, but we
leave it as is to suggest the challenge of generalizing it.

The following example computes the Diophantine equation induced by the Tribonacci recurrence
and finds all of its solutions:

> allSolns([1, 1, 1]);

findAbsoluteMin: making a floating point guess: -2. <= 0

allSolns: looking for monotonically increasing solutions up to 5

{[0, 0, 1]}

The output states that all solutions are generated by applying the Tribonacci recurrence to the
initial solution (0, 0, 1). Note that allSolns searches (without loss of generality) for monotonically
increasing solutions.

The following example does the same thing for a different third-order recurrence:

> allSolns([5, 3, 1]);

findAbsoluteMin: making a floating point guess: -7.333333333 <= 0

allSolns: looking for monotonically increasing solutions up to 36

9
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{[0, 0, 1]}

And finally, an example with several generating initial conditions:

> allSolns([2, 3, 1]);

findAbsoluteMin: making a floating point guess: -2. <= 0

allSolns: looking for monotonically increasing solutions up to 17

{[0, 0, 1], [0, 1, 3], [0, 2, 5], [1, 1, 4]}

The package also includes a verbose “proof printer,” verboseProof, which fills in the details of
Proposition 5 for specific parameters.

> verboseProof([2, 3, 1]);

findAbsoluteMin: making a floating point guess: -2. <= 0

THEOREM. The nonnegative, increasing solutions to the

diophantine equation

3 2 2 2 2 3

x + 6 x y + 2 x z + 11 x y + 3 x y z - 3 x z + 7 y

2 2 3

+ y z - 4 y z + z = 1

are generated by applying the recurrence

[2, 3, 1]

to finitely many initial solutions.

PROOF. Let P be the polynomial P on the left-hand side.

Note that it is invariant under the recurrence:

P - P(shift) is, 0

The backwards shift formula to get the previous term

from the triple (x, y, z) is

z - 3 x - 2 y

We will show that this backwards shift gives a smaller

increasing solution for sufficiently large z.

3

Divide both sides of our equation by, z ,

10



and make the change of variables {t = x / z, s = y / z}

This gives

3 2 2 3 2 2

7 s + 11 s t + 6 s t + t + s + 3 s t + 2 t - 4 s

1

- 3 t + 1 = ----

3

z

where (t, s) is in the unit square.

Let (x, y, z) be a generic solution. Then the following

inequalities are routine calculus exercises.

the inequality, 0 < z - 3 x - 2 y, also known as,

0 < -2 s - 3 t + 1, holds for

1

-------------------------- <= z

/ 1/2\(1/3)

|50371 1718 859 |

|----- - -----------|

\81675 81675 /

more explicitly for

16.36065936 <= z

the inequality, z - 3 x - 2 y < x, also known as,

-2 s - 3 t + 1 < t, holds for

1

----------------------- <= z

/ 1/2\(1/3)

|161 53 1219 |

|--- - ----------|

\216 2484 /

more explicitly for

11



13.33123227 <= z

We only need to look for solutions with, z < 16.36065936

and there are finitely many of these.

Q.E.D.
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