AN EVEN SIMPLER PROOF OF PASCAL'S HEXAGON THEOREM

René DESCARTES1 and Shakosh B. EKHAD2

We give an even shorter, simpler, and more elegant proof than [vY] of:

Pascal's Theorem: If the vertices of a hexagon lie on a circle and the three pairs of opposite sides intersect, then the three points of intersection are collinear.

Proof: Type maple (CR), and then3 the following:

with(geometry): for i from 0 to 5 do point(A.i,cos (t.i),sin(t.i)) od:
for i from 0 to 2 do line(L.i,[A.i,A.(i+1)]):line(M.i,[A.(i+3) ,A.(i+4 mod 6)]):
point(P.i,coordinates(inter(L.i,M.i))):od:triangle(T,[P0,P1,P2]):evalb(simplify(area(T))=0);

Reference

1 Queen Christine's Court, Stockholm, Sweden. Current address: Panthéon, Paris, France.
2 Department of Mathematics, Temple University, Philadelphia, PA 19122, USA. exhad@math.temple.edu.
3 Inserting cos:=proc(t):((t+1)/t)/2: end: sin:=proc(t):((t-1)/t)/2: end: at the beginning will speed up the computation twenty-fold.