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“It is a capital mistake to theorise before one has data. Insensibly one begins to twist facts to suit
theories, instead of theories to suit facts.”—Sherlock Holmes to Dr. Watson in A Scandal in Bohemia by
A. Conan Doyle, 1891.

Important Note: This article is accompanied by the Maple package HANS, downloadable from

http://www.math.rutgers.edu/~zeilberg/tokhniot/HANS.

The “front” of this article,

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hans.html
contains lots of supporting input and output files.

1 Introduction

Let pN (n) denote the number of partitions of the integer n into at most N parts. The generating function
of pN (n),

FN (x) :=
∑
n≥0

pN (n)xn =
N∏

j=1

1
1− xj

,

may be decomposed into partial fractions:

N∏
j=1

1
1− xj

=
N∑

k=1

∑
0≤h<k

gcd(h,k)=1

bN/kc∑
l=1

Ch,k,l(N)
(x− e2πih/k)l

. (1.1)

We shall refer to the Ch,k,l(N) defined by (1.1) as the Rademacher coefficients.
Near the end of his posthumously published masterpiece Topics in Analytic Number Theory [4, p.

302], Hans Rademacher made the following conjecture:

Rademacher’s Conjecture. For all integers h, k, l such that 0 ≤ h < k, gcd(h, k) = 1 and l ≥ 1,
limN→∞ Ch,k,l(N) exists and equals

Rh,k,l := −2π
( π

12

)3/2 eπi(s(h,k)+2hl/k)

k5/2
∆l−1

α L3/2

(
− π2

6k2
(α + 1)

)
, (1.2)

evaluated at α = 1
24 , where s(h, k) =

∑k−1
µ=1

(
µ
k − bµ

k c −
1
2

) (
hµ
k − bhµ

k c −
1
2

)
is the Dedekind sum, ∆α is

the forward difference operator, so that

∆j
αf(α) =

j∑
h=0

(−1)h

(
j

h

)
f(α + j − h),
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and

L3/2(−y2) = − 1
2
√

πy2

(
2 cos(2y)− sin(2y)

y

)
.

In particular, if the Rademacher conjecture would have been true then it would have followed that

lim
N→∞

C0,1,1(N) = R0,1,1(= − 6
25

(
1 +

2
√

3
5π

)
= −0.292927573960 . . . ),

lim
N→∞

C0,1,2(N) = R0,1,2(=
144
1225

+
5616

42875π
= 0.1897670688440 . . . ),

lim
N→∞

C1,2,1(N) = R1,2,1(= −2
√

6
25

(
cos

5π

12
− 12

5π
sin

5π

12

)
= 0.093882853484 . . . ).

(Let us make the minor remark, for the sake of mathematical accuracy, that the floating-point ap-
proximation for the value of R0,1,1 stated by Rademacher [4, p. 302] was erroneous, as were the exact
values of R0,1,2 and R1,2,1 [for the latter he gave exactly one half of the correct value]. These erroneous
values were quoted, without correction, by Andrews [1, p. 388].)

Rademacher supplied (with one error) a table of values for C0,1,1(N), C0,1,2(N), and C1,2,1(N) for
N = 1, 2, 3, 4, 5, and in fact these values are not too far off from conjectured “N = ∞” case.

Rademacher began work on the book in which this conjecture appeared [4] no later than 1944 and was
still working on it at the inception of his final illness. Thus as the final version was edited and published
by Rademacher’s students Emil Grosswald, Joseph Lehner, and Morris Newman, after Rademacher’s
death in 1969, we will never know whether Rademacher came to doubt the truth of the conjecture after
he had written it down. However, George Andrews reports that Rademacher discussed the conjecture in
a course he taught at the University of Pennsylvania in the 1961–1962 academic year.

In [3], Augustine Munagi considered an different type of partial fraction decomposition called q-partial
fractions, and proved a special case of the analog of the Rademacher conjecture, relative to the q-partial
fraction decomposition.

We should also note that the first to cast doubts on the Rademacher conjecture were Jane Friedman
and Leon Ehrenpreis. Ehrenpreis [2, p. 317] stated, “If one attempts to carry out the usual type
of partial fraction decomposition of the partition function term-by-term, it is difficult to compute the
coefficients. My student, Jane Friedman, spent a great deal of time trying to apply computer algorithm
methods to compare the coefficients with those of Rademacher. . . Unfortunately, the computer study
proved inconclusive.”

In this article, we present overwhelming evidence against this conjecture, taken literally, but we
will present ample evidence for a modified conjecture. Additionally, we will present a fast algorithm for
generating the Rademacher coefficients, and formulas for a selection of particular Rademacher coefficients.

2 Empirical evidence against the Rademacher conjecture

2.1 The actual behavior of the sequence C0,1,1(N)

The values of C0,1,1(N), for 1 ≤ N ≤ 400 are provided, in both exact rational and floating point approx-
imation form, at
http://www.math.rutgers.edu/ zeilberg/tokhniot/oHANS1

Figures 1 and 2 are graphical summaries of C0,1,1(N).

Figure 1: Graph of C0,1,1(N) for N from 1 to 100, together with the line y = −0.2929276

2



Figure 2: Graph of C0,1,1(N) for N from 1 to 200.

Notice that C0,1,1(25) differs from Rademacher’s conjectured value of C0,1,1(∞) by less than 0.000032,
but then things go down hill (for the conjecture) from there, and get particularly bad after about n = 150.
Numerical evidence points to the sequence C0,1,1(N) oscillating and attaining arbitrarily large positive
and negative values. The same thing is true for other sequences Ch,k,l(N); see the output at the webpage
of this article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hans.html

By examining the graphs in Figures 1 and 2 and the associated numerical data, it seems reasonable
to state the following alternative conjecture:

Conjecture 1. C0,1,1(N) is an oscillating function of N of “period” about 32, whose absolute value
increases without bound as N increases.

By “period” 32 we mean that the peaks and valleys, eventually, recur at a period of 32. We also noticed,
numerically, that the elevations and depths of successive peaks and valleys roughly grows exponentially
with a factor around 8.

2.2 How to compute the sequence C0,1,1(N) fast

If you use the definition of C0,1,1(N), or Andrews’s formula [1, p. 388, Theorem 1], you can’t go very
far, even with Maple. Rademacher calculated C0,1,1(N) for N = 1, 2, 3, 4, 5, presumably by hand, and
made an error in the N = 5 case. Andrews [1, p. 388], who had access to a computer algebra system in
2003, corrected Rademacher’s error at N = 5 and extended the list to N = 6, 7, 8.

We need to be more clever. A fast recurrence can be derived as follows. Since

N∏
j=1

1
1− xj

=
N∑

l=1

C0,1,l(N)
(x− 1)l

+ . . . ,

we can multiply both sides by (x− 1)N and get

(x− 1)N
N∏

j=1

1
1− xj

=
N−1∑
r=0

Dr(N)(x− 1)r + . . . .

Once we know Dr(N), we can find C0,1,l(N), since they equal DN−l(N). It remains to find a fast recur-
rence for Dr(N).

By definition, we have:

1− xN

x− 1

( ∞∑
r=0

Dr(N)(x− 1)r

)
=

∞∑
r=0

Dr(N − 1)(x− 1)r .

Letting z = x− 1, this is:

1− (z + 1)N

z

( ∞∑
r=0

Dr(N)zr

)
=

∞∑
r=0

Dr(N − 1)zr .

By the binomial theorem,

−

(
N−1∑
a=0

(
N

a + 1

)
za

)( ∞∑
r=0

Dr(N)zr

)
=

∞∑
r=0

Dr(N − 1)zr .
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Equating coefficients of zr we get:

NDr(N) +
r∑

a=1

(
N

a + 1

)
Dr−a(N) = −Dr(N − 1) .

And finally:

Dr(N) = −Dr(N − 1)
N

−
r∑

a=1

1
N

(
N

a + 1

)
Dr−a(N) .

This is implemented in procedure C01 of HANS.
The same argument leads to efficient recurrences for Ch,k,l(N), except that now we have to distingish

between the case when N is divisible by k and when it is not, yielding two different recurences. This is
implemented in procedure ChklN(h,k,l,N) of HANS.

2.3 C1,2,1(N)

The values of C1,2,1(N) for 1 ≤ N ≤ 700, in both exact rational form and approximate floating point
form are provided at

http://www.math.rutgers.edu/ zeilberg/tokhniot/oHANS3
Graphical summaries are provided in Figures 3 and 4.

Figure 3: Graph of C1,2,1(N) for N from 1 to 150, together with the line y = 0.09388285

Figure 4: Graph of C1,2,1(N) for N from 1 to 300, together with the line y = 0.09388285

3 “Top down” formulas for the Rademacher Coefficients

3.1 C0,1,l(N)

As Rademacher already pointed out, it seems hopeless to get a closed-form formula for Ch,k,l(N) for
l = 1, 2, . . . , but if you work your way up from the “top” one can conjecutre, and then rigorously prove
explicit formuals for Ch,k,N−r(N), that alas, get increasingly more complicated as r gets larger.

Conjecture 2.

C0,1,N−r(N) =
(−1)N+r

4rN !r!
P0,1,N−r(N),

where P0,1,N−r(N) is a convex, alternating, monic polynomial of degree 2r whose only real roots are 0
and 1.

Theorem 3. Explicit formulas for the P0,1,N−r(N) of Conjecture 2 may be given for any specific r, in
particular, we have

P0,1,N (N) = 1 (3.1)

P0,1,N−1(N) = N2 −N (3.2)

P0,1,N−2(N) = N4 − 22N3

9
+

13N2

3
− 26N

9
(3.3)

P0,1,N−3(N) = N6 − 13N5

3
+

43N4

3
− 25N3 +

98N2

3
− 56N

3
(3.4)
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P0,1,N−4(N) = N8 − 20N7

3
+

862N6

27
− 21104N5

225
+

29039N4

135
− 14548N3

45
+

9892N2

27
− 42896N

225

P0,1,N−5(N) = N10 − 85N9

9
+

1610N8

27
− 33862N7

135
+

36869N6

45
− 269371N5

135
+

34712N4

9

− 716548N3

135
+

742928N2

135
− 120448N

45

P0,1,N−6(N) = N12 − 38N11

3
+

905N10

9
− 675574N9

1215
+

321073N8

135
− 158916134N7

19845

+
4121695N6

189
− 134142298N5

2835
+

11129492N4

135
− 908622824N3

8505

+
2805920N2

27
− 317019904N

6615

Remark 4. Readers desiring formulas for C0,1,N−r(N) for r > 6 are directed to the ChkFormula procedure
in the HANS Maple package.

Remark 5. From the above (and additional data not reproduced here but available at the website), we
may deduce that

P0,1,N−r(N) = N2r − 2r2 + 7r

9
N2r−1 +

2r4 + 6r3 + 287
2 r2 − 303

2 r

92
N2r−2 + lower order terms.

Proof of Theorem 2. Define GN := (x− 1)NFN (x). Then GN has a Taylor series expansion about x = 1,
whose first N coefficients are the Rademacher coefficients:

GN =
N−1∑
j=0

C0,1,N−j(N)(x− 1)j + O((x− 1)N ).

Clearly,
(1− xN )GN = (x− 1)GN−1. (3.5)

Expanding (1− xN ) on the left hand side of (3.5) as a Taylor polynomial about x = 1, we have− N∑
j=1

(
N

j

)
(x− 1)j

N−1∑
j=0

Ch,k,N−j(N)(x− 1)j + higher degree terms


=

N−1∑
j=1

C0,1,N−j(N − 1)(x− 1)j + higher degree terms (3.6)

Comparing the coefficients of (x− 1)1 on both sides of (3.6), we find

−NC0,1,N (N) = C0,1,N−1(N − 1).

Solving the recurrence with the initial condition C0,1,1(1) = −1, yields

C0,1,N (N) =
(−1)N

N !
, (3.7)

which is (3.1).
Comparing the coefficients of (x− 1)2 on both sides of (3.6), we find, taking into account (3.7),

−NC0,1,N−1(N)−
(

N

2

)
(−1)N

N !
= C0,1,N−2(N − 1) (3.8)

5



with initial condition C0,1,1(2) = − 1
4 yields

C0,1,N−1(N) =
(−1)N+1

4(N − 2)!
, (3.9)

which is (3.2).
Comparing the coefficients of (x − 1)3 on both sides of (3.6), we find, taking into account (3.7)

and (3.9),

−NC0,1,N−2(N)−
(

N

2

)
(−1)N+1

4(N − 2)!
−
(

N

3

)
(−1)N

N !
= C0,1,N−3(N − 1) (3.10)

with initial condition C0,1,1(3) = − 17
72 yields

C0,1,N−2(N) =
(−1)N (9N2 − 13N + 26)

288(N − 2)!
, (3.11)

which is (3.3). Results for larger r follow analogously.

3.2 C1,2,l(N)

Let us now define ḠN , analogous to GN . Let

ḠN := (x + 1)bN/2cFN (x).

Then ḠN has a Taylor series expansion about x = −1, whose first bN
2 c coefficients are the Rademacher

coefficients:

ḠN =
bN/2c−1∑

r=0

C1,2,bN/2c−r(N)(x + 1)r + O((x + 1)bN/2c).

We now abandon the use of the floor function. Notice that

(1− x2n−1)(1− x2n)Ḡ2n = (x + 1)Ḡ2n−2. (3.12)

Thus, by expanding the two left most factors on the left side as a Taylor series about x = −1,{
4n−1∑
r=1

(−1)r+1

[(
4n− 1

r

)
+
(

2n

r

)
−
(

2n− 1
r

)]
(x + 1)r

}

×

(
n−1∑
r=0

C1,2,n−r(2n)(x + 1)r + higher degree terms

)

=
n−1∑
r=1

C1,2,n−r(2n− 2)(x + 1)r + higher degree terms (3.13)

By comparing coefficients of (x + 1)r in both sides of (3.13) and solving the recurrences, we obtain
formulas for C1,2,n−r(2n) analogous to those for C0,1,N−r(N).

Comparing coefficients of (x + 1) on both sides of (3.13), we find

4nC1,2,n(2n) = C1,2,n−1(2n− 2),

which, together with initial condition C1,2,1(2) = 1
4 , yields

C1,2,n(2n) =
1

22nn!
. (3.14)
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Comparing coefficients of (x + 1)2 on both sides of (3.13), and taking into account (3.14), we find

4nC1,2,n−1(2n)− 2n− 1
4n−1(n− 1)!

= C1,2,n−2(2n− 2),

which, together with initial condition C1,2,1(4) = 1
8 , yields

C1,2,n−1(2n) =
n

22n(n− 1)!
. (3.15)

Comparing coefficients of (x + 1)3 on both sides of (3.13), and taking into account (3.14) and (3.15),
we find

4nC1,2,n−2(2n)− 4n2(2n− 1)
4n(n− 1)!

+
n(2n− 1)(16n− 13)

3 · 4nn!
= C1,2,n−3(2n− 2),

which, together with initial condition C1,2,1(6) = 461
4608 , yields

C1,2,n−2(2n) =
18n3 − 8n2 + 15n + 2

32 · 22n+2(n− 1)!
. (3.16)

This process can be continued indefinitely with higher powers of (x + 1), e.g.

C1,2,n−3(2n) =
(n2 + 1)(6n3 − 8n2 + 9n + 2)

32 · 22n+2(n− 1)!
, (3.17)

C1,2,n−4(2n) =
2700n7 − 7200n6 + 15100n5 − 17448n4 + 21205n3 − 8880n2 + 13350n + 3423

25 · 34 · 22n+5(n− 1)!
. (3.18)

Of course, the observation

(1− x2n)(1− x2n+1)Ḡ2n+1 = (x + 1)Ḡ2n−1

leads to analogous formulas for the C1,2,n−r(2n + 1), e.g.,

C1,2,n(2n + 1) =
1

22n+1 n!
, (3.19)

C1,2,n−1(2n + 1) =
2n2 + 2n + 1

22n+2 n!
, (3.20)

C1,2,n−2(2n + 1) =
18n5 + 46n4 + 61n3 + 53n2 + 29n + 9

9 · 22n+3 (n + 1)!
, (3.21)

C1,2,n−3(2n + 1) =
(2n2 + 2n + 3)(6n4 + 4n3 + 3n2 + 2n + 3)

9 · 22n+4n!
. (3.22)

Clearly, the same idea can be used to find formulas for Ch,k,n−j(kn + r) for any h, k, j, r. This
has been implemented in the procedure ChkFormula in the HANS Maple package. For those desiring
automatically generated papers, containing both formulas of this type and their proofs, please use the
HansTopDownAutoPaper procedure in the HANS Maple package.

4 Close Encounters of the Rademacher Kind

While it appears that limN→∞ Ch,k,l(N) does not exist for any (h, k, l), we can nonetheless define
Bh,k,l(N) to be the N which comes closest to Rademacher’s conjectured value of Ch,k,l(∞). This is
implemented in the CloseEncounters procedure in HANS.
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l B0,1,l(N) absolute difference absolute ratio
1 25 0.0003177 0.99989
2 47 0.0001434 0.99924
3 71 0.0000828 0.99991
4 149 0.0000009 1.00001
5 109

Notice that the first few values of B0,1,l(N) are close to 24l. This motivates us to consider comparing
C0,1,l(24l) to R0,1,l, Rademacher’s conjectured value of C0,1,l(∞).

l |C0,1,l(24l)−R0,1,l| |C0,1,l(24l)/R0,1,l|
1 0.0053741095 1.018346206
2 0.0015044594 1.007927400
3 0.00033240887 0.996241370
4 0.00004427030 1.001376635
5 0.000011288321 0.9988220859
6 0.000001686611 1.0006971253
7 0.0000001275687 0.9997575030
8 0.0000000110523 1.0000986383
9 0.00000000239242 0.9999562770
10 0.000000005333208 1.0000141594
11 0.0000000187490584 0.9999947242
12 0.0000000393434274 1.0000017401

Thus we have some evidence that even though the N for which C0,1,l(N) is closest to R0,1,l is not
N = 24l, C0,1,l(24l) seems to provide a good approximation to R0,1,l.
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