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“It is a capital mistake to theorise before one has data. Insensibly one begins to twist facts to suit theories,
instead of theories to suit facts.”—Sherlock Holmes to Dr. Watson [2, p. 63].

Important Note: This article is accompanied by the Maple package HANS, downloadable from
http://www.math.rutgers.edu/~zeilberg/tokhniot/HANS.

The “front” of this article, http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hans.html
contains lots of supporting input and output files.

Abstract. In his book Topics in Analytic Number Theory, Hans Rademacher conjectured that the limits of
certain sequences of coefficients that arise in the ordinary partial fraction decomposition of the generating function
for partitions of integers into at most N parts exist and equal particular values that he specifies. Despite being
open for nearly four decades, little progress has been made toward proving or disproving the conjecture, perhaps
in part due to the difficulty in actually computing the coefficients in question. In this paper, we provide a
fast algorithm for calculating the Rademacher coefficients, a large amount of data, direct formulas for certain
collections of Rademacher coefficients, and overwhelming evidence against the truth of the conjecture. While
the limits of the sequences of Rademacher coefficients do not exist (the sequences oscillate and attain arbitrarily
large positive and negative values), the sequences do get very close to Rademacher’s conjectured limits for certain
(predictable) indices in the sequences.

1. Introduction

Let pN (n) denote the number of partitions of the integer n into at most N parts. The generating function of
pN (n),

FN (x) :=
∑
n≥0

pN (n)xn =
N∏

j=1

1
1− xj

,

may be decomposed into partial fractions:

(1.1)
N∏

j=1

1
1− xj

=
N∑

k=1

∑
0≤h<k

gcd(h,k)=1

bN/kc∑
l=1

Ch,k,l(N)
(x− e2πih/k)l

.

We shall refer to the Ch,k,l(N) defined by (1.1) as the Rademacher coefficients.
Near the end of his posthumously published masterpiece Topics in Analytic Number Theory [5, p. 302], Hans

Rademacher made the following conjecture:

Rademacher’s Conjecture. For all integers h, k, l such that 0 ≤ h < k, gcd(h, k) = 1 and l ≥ 1, limN→∞ Ch,k,l(N)
exists and equals

(1.2) Rh,k,l := −2π
( π

12

)3/2 eπi(s(h,k)+2hl/k)

k5/2
∆l−1

α L3/2

(
− π2

6k2
(α + 1)

)
,

evaluated at α = 1
24 , where s(h, k) =

∑k−1
µ=1

(
µ
k − bµ

k c −
1
2

) (
hµ
k − bhµ

k c −
1
2

)
is the Dedekind sum, ∆α is the

forward difference operator, so that

∆j
αf(α) =

j∑
h=0

(−1)h

(
j

h

)
f(α + j − h),

1
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and

L3/2(−y2) = − 1
2
√

πy2

(
2 cos(2y)− sin(2y)

y

)
.

In particular, if the Rademacher conjecture would have been true then it would have followed that

lim
N→∞

C0,1,1(N) = R0,1,1(= − 6
25

(
1 +

2
√

3
5π

)
= −0.292927573960 . . . ),

lim
N→∞

C0,1,2(N) = R0,1,2(=
144
1225

+
5616

42875π
= 0.1897670688440 . . . ),

lim
N→∞

C1,2,1(N) = R1,2,1(= −2
√

6
25

(
cos

5π

12
− 12

5π
sin

5π

12

)
= 0.093882853484 . . . ).

(Let us make the minor remark, for the sake of mathematical accuracy, that the floating-point approximation
for the value of R0,1,1 stated by Rademacher [5, p. 302] was erroneous, as were the exact values of R0,1,2 and
R1,2,1 [for the latter he gave exactly one half of the correct value]. These erroneous values were quoted, without
correction, by Andrews [1, p. 388].)

Rademacher supplied (with one error) a table of values for C0,1,1(N), C0,1,2(N), and C1,2,1(N) for N =
1, 2, 3, 4, 5, and in fact these values are not too far off from conjectured “N = ∞” case.

Rademacher began work on the book in which this conjecture appeared [5] no later than 1944 and was
still working on it at the inception of his final illness. Thus as the final version was edited and published by
Rademacher’s students Emil Grosswald, Joseph Lehner, and Morris Newman, after Rademacher’s death in 1969,
we will never know whether Rademacher came to doubt the truth of the conjecture after he had written it
down. However, George Andrews reports that Rademacher discussed the conjecture in a course he taught at the
University of Pennsylvania during the 1961–1962 academic year.

In [4], Augustine Munagi considered a different type of partial fraction decomposition called q-partial frac-
tions, and proved a special case of the analog of the Rademacher conjecture, relative to the q-partial fraction
decomposition.

We should also note that the first to cast doubts on the Rademacher conjecture were Jane Friedman and Leon
Ehrenpreis. Ehrenpreis [3, p. 317] stated, “My student, Jane Friedman, spent a great deal of time trying to
apply computer algorithm methods to compare the coefficients with those of Rademacher. . . Unfortunately, the
computer study proved inconclusive.”

In this article, we present overwhelming evidence against this conjecture, taken literally, but we will present
ample evidence for a modified conjecture. Additionally, we will present a fast algorithm for generating the
Rademacher coefficients, and formulas for a selection of particular Rademacher coefficients.

2. Empirical evidence against the Rademacher conjecture

2.1. The actual behavior of the sequence C0,1,1(N). The values of C0,1,1(N), for 1 ≤ N ≤ 700 are provided,
in both exact rational and floating point approximation form, at
http://www.math.rutgers.edu/~zeilberg/tokhniot/oHANS1

Figures 1 and 2 are graphical summaries of C0,1,1(N).

Notice that C0,1,1(25) differs from Rademacher’s conjectured value of C0,1,1(∞) by less than 0.000032, but
then things go down hill (for the conjecture) from there, and get particularly bad after about n = 150. Numerical
evidence points to the sequence C0,1,1(N) oscillating and attaining arbitrarily large positive and negative values.
The same thing is true for other sequences Ch,k,l(N); see the output at the webpage of this article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hans.html

By examining the graphs in Figures 1 and 2 and the associated numerical data, it seems reasonable to state
the following alternative conjecture:

Conjecture 1. C0,1,1(N) is an oscillating function of N of “period” about 32, whose absolute value increases
without bound as N increases.
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Figure 1. Graph of C0,1,1(N) for N from 1 to 100, together with the line y = −0.2929276
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Figure 2. Graph of C0,1,1(N) for N from 1 to 200.
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By “period” 32 we mean that the peaks and valleys, eventually, recur at a period of 32. We also noticed,
numerically, that the elevations and depths of successive peaks and valleys roughly grows exponentially with a
factor around 8.

2.2. How to compute the sequence C0,1,1(N) fast. If you use the definition of C0,1,1(N), or Andrews’s
formula [1, p. 388, Theorem 1], you can’t go very far, even with Maple. Rademacher calculated C0,1,1(N) for
N = 1, 2, 3, 4, 5, presumably by hand, and made an error in the N = 5 case. Andrews [1, p. 388], who had
access to a computer algebra system in 2003, corrected Rademacher’s error at N = 5 and extended the list to
N = 6, 7, 8.

We need to be more clever. A fast recurrence can be derived as follows. Since
N∏

j=1

1
1− xj

=
N∑

l=1

C0,1,l(N)
(x− 1)l

+ . . . ,

we can multiply both sides by (x− 1)N and get

(x− 1)N
N∏

j=1

1
1− xj

=
N−1∑
r=0

Dr(N)(x− 1)r + . . . .

Once we know Dr(N), we can find C0,1,l(N), since they equal DN−l(N). It remains to find a fast recurrence for
Dr(N).

By definition, we have:

1− xN

x− 1

( ∞∑
r=0

Dr(N)(x− 1)r

)
=

∞∑
r=0

Dr(N − 1)(x− 1)r .
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Letting z = x− 1, this is:

1− (z + 1)N

z

( ∞∑
r=0

Dr(N)zr

)
=

∞∑
r=0

Dr(N − 1)zr .

By the binomial theorem,

−

(
N−1∑
a=0

(
N

a + 1

)
za

)( ∞∑
r=0

Dr(N)zr

)
=

∞∑
r=0

Dr(N − 1)zr .

Equating coefficients of zr we get:

NDr(N) +
r∑

a=1

(
N

a + 1

)
Dr−a(N) = −Dr(N − 1) .

And finally:

Dr(N) = −Dr(N − 1)
N

−
r∑

a=1

1
N

(
N

a + 1

)
Dr−a(N) .

This is implemented in procedure C01(l,N) of HANS.
The same argument leads to efficient recurrences for Ch,k,l(N), except that now we have to distingish between

the case when N is divisible by k and when it is not, yielding two different recurences. This is implemented in
procedure ChklN(h,k,l,N) of HANS.

2.3. C1,2,1(N). The values of C1,2,1(N) for 1 ≤ N ≤ 700, in both exact rational form and approximate floating
point form are provided at

http://www.math.rutgers.edu/ zeilberg/tokhniot/oHANS3
Graphical summaries are provided in Figures 3 and 4.

Figure 3. Graph of C1,2,1(N) for N from 1 to 150, together with the line y = 0.09388285
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3. “Top down” formulas for the Rademacher Coefficients

3.1. C0,1,l(N). As Rademacher already pointed out, it seems hopeless to get a closed-form formula for Ch,k,l(N)
for l = 1, 2, . . . , but if you work your way up from the “top” one can conjecutre, and then rigorously prove explicit
formuals for Ch,k,N−r(N), that alas, get increasingly more complicated as r gets larger.

Conjecture 2.

C0,1,N−r(N) =
(−1)N+r

4rN !r!
P0,1,N−r(N),

where P0,1,N−r(N) is a convex, alternating, monic polynomial of degree 2r whose only real roots are 0 and 1.
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Figure 4. Graph of C1,2,1(N) for N from 1 to 300, together with the line y = 0.09388285
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Theorem 3. Explicit formulas for the P0,1,N−r(N) of Conjecture 2 may be given for any specific r, in particular,
we have

(3.1) P0,1,N (N) = 1

(3.2) P0,1,N−1(N) = N2 −N

(3.3) P0,1,N−2(N) = N4 − 22N3

9
+

13N2

3
− 26N

9
Remark 4. Readers desiring formulas for C0,1,N−r(N) for r > 3 are directed to the ChkFormula procedure in the
HANS Maple package.

Remark 5. From the above (and additional data not reproduced here but available at the website), we may
deduce that

P0,1,N−r(N) = N2r − 2r2 + 7r

9
N2r−1 +

2r4 + 6r3 + 287
2 r2 − 303

2 r

92
N2r−2 + lower order terms.

Proof of Theorem 3. Define GN := (x− 1)NFN (x). Then GN has a Taylor series expansion about x = 1, whose
first N coefficients are the Rademacher coefficients:

GN =
N−1∑
j=0

C0,1,N−j(N)(x− 1)j + O((x− 1)N ).

Clearly,

(3.4) (1− xN )GN = (x− 1)GN−1.

Expanding (1− xN ) on the left hand side of (3.4) as a Taylor polynomial about x = 1, we have

(3.5)

− N∑
j=1

(
N

j

)
(x− 1)j

N−1∑
j=0

Ch,k,N−j(N)(x− 1)j + higher degree terms


=

N−1∑
j=1

C0,1,N−j(N − 1)(x− 1)j + higher degree terms

Comparing the coefficients of (x− 1)1 on both sides of (3.5), we find

−NC0,1,N (N) = C0,1,N−1(N − 1).

Solving the recurrence with the initial condition C0,1,1(1) = −1, yields

(3.6) C0,1,N (N) =
(−1)N

N !
,

which is (3.1).
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Comparing the coefficients of (x− 1)2 on both sides of (3.5), we find, taking into account (3.6),

(3.7) −NC0,1,N−1(N)−
(

N

2

)
(−1)N

N !
= C0,1,N−2(N − 1)

with initial condition C0,1,1(2) = − 1
4 yields

(3.8) C0,1,N−1(N) =
(−1)N+1

4(N − 2)!
,

which is (3.2).
Comparing the coefficients of (x− 1)3 on both sides of (3.5), we find, taking into account (3.6) and (3.8),

(3.9) −NC0,1,N−2(N)−
(

N

2

)
(−1)N+1

4(N − 2)!
−
(

N

3

)
(−1)N

N !
= C0,1,N−3(N − 1)

with initial condition C0,1,1(3) = − 17
72 yields

(3.10) C0,1,N−2(N) =
(−1)N (9N2 − 13N + 26)

288(N − 2)!
,

which is (3.3). Results for larger r follow analogously. �

3.2. C1,2,l(N). Let us now define ḠN , analogous to GN . Let

ḠN := (x + 1)bN/2cFN (x).

Then ḠN has a Taylor series expansion about x = −1, whose first bN
2 c coefficients are the Rademacher coeffi-

cients:

ḠN =
bN/2c−1∑

r=0

C1,2,bN/2c−r(N)(x + 1)r + O((x + 1)bN/2c).

We now abandon the use of the floor function. Notice that

(3.11) (1− x2n−1)(1− x2n)Ḡ2n = (x + 1)Ḡ2n−2.

Thus, by expanding the two left most factors on the left side as a Taylor series about x = −1,

(3.12)

{
4n−1∑
r=1

(−1)r+1

[(
4n− 1

r

)
+
(

2n

r

)
−
(

2n− 1
r

)]
(x + 1)r

}

×

(
n−1∑
r=0

C1,2,n−r(2n)(x + 1)r + higher degree terms

)

=
n−1∑
r=1

C1,2,n−r(2n− 2)(x + 1)r + higher degree terms

By comparing coefficients of (x + 1)r in both sides of (3.12) and solving the recurrences, we obtain formulas
for C1,2,n−r(2n) analogous to those for C0,1,N−r(N).

(3.13) C1,2,n(2n) =
1

22nn!
.

(3.14) C1,2,n−1(2n) =
n

22n(n− 1)!
.

(3.15) C1,2,n−2(2n) =
18n3 − 8n2 + 15n + 2

32 · 22n+2(n− 1)!
.
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Of course, the observation (1 − x2n)(1 − x2n+1)Ḡ2n+1 = (x + 1)Ḡ2n−1 leads to analogous formulas for the
C1,2,n−r(2n + 1), e.g.,

(3.16) C1,2,n(2n + 1) =
1

22n+1 n!
,

(3.17) C1,2,n−1(2n + 1) =
2n2 + 2n + 1

22n+2 n!
,

(3.18) C1,2,n−2(2n + 1) =
18n5 + 46n4 + 61n3 + 53n2 + 29n + 9

9 · 22n+3 (n + 1)!
,

Clearly, the same idea can be used to find formulas for Ch,k,n−j(kn + r) for any h, k, j, r. This has been
implemented in the procedure ChkFormula in the HANS Maple package. For those desiring automatically generated
papers, containing both formulas of this type and their proofs, please use the HansTopDownAutoPaper procedure
in the HANS Maple package.

4. Close Encounters of the Rademacher Kind

While it appears that limN→∞ Ch,k,l(N) does not exist for any (h, k, l), we can nonetheless define Bh,k,l to
be the N which comes closest to Rademacher’s conjectured value of Ch,k,l(∞). This is implemented in the
CloseEncounters procedure in HANS.

l B0,1,l absolute difference absolute ratio
1 25 0.0003177 0.99989
2 47 0.0001434 0.99924
3 71 0.0000828 0.99991
4 149 0.0000009 1.00001

Notice that the first few values of B0,1,l are close to 24l. This motivates us to consider comparing C0,1,l(24l)
to R0,1,l, Rademacher’s conjectured value R0,1,l of C0,1,l(∞).

l |C0,1,l(24l)−R0,1,l| |C0,1,l(24l)/R0,1,l|
1 0.0053741095 1.018346206
2 0.0015044594 1.007927400
3 0.00033240887 0.996241370
4 0.00004427030 1.001376635
5 0.000011288321 0.9988220859
6 0.000001686611 1.0006971253
7 0.0000001275687 0.9997575030
8 0.0000000110523 1.0000986383
9 0.00000000239242 0.9999562770
10 0.000000005333208 1.0000141594
11 0.0000000187490584 0.9999947242
12 0.0000000393434274 1.0000017401

Thus we have some evidence that even though the N for which C0,1,l(N) is closest to R0,1,l is not N = 24l,
C0,1,l(24l) seems to provide a good approximation to R0,1,l.
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