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Abstract: We present a short proof of an intriguing result proved in 2007 by Leonid Hanin, Robert

Fisher, and Boris Hanin.

In a delightful article [HFH], the authors first stated, and gave a beautiful synthetic proof, of the

case d = 2 of the following two theorems regarding points on a circle. They later considered general

quadratic surfaces, focusing on two and three dimensions, and remarked that their reasoning is true

for any dimension.

Theorem 1: Let X1, . . . , Xn be n ≥ 2 points on a sphere in Rd, and C be their geometric center

of mass. Denote by Y1, . . . , Yn the second points of intersection of the lines X1C,X2C, . . . ,XnC

with the sphere, respectively, then
n∑

i=1

XiC

CYi
= n .

Theorem 2: Let X1, . . . , Xn be n ≥ 2 points on a sphere in Rd, with center O, and let C be their

geometric center of mass. For any point P inside the sphere, let Y1, . . . , Yn be the second points of

intersection of PXi with the sphere. The set of points P for which

n∑
i=1

XiP

PYi
= n ,

is a sphere with diameter OC.

In this note I will give a short, self-contained, proof of their result for general d, but for the sake of

simplicity will stick to spheres. Of course, by a change of variables every quadratic surface can be

transformed to a sphere, if you don’t mind “virtual points”.

Since Theorem 2 implies Theorem 1 we will only prove the former. We need the following simple

lemma.

Lemma: For any point X on the unit d-dimensional sphere, and any point P inside the sphere ,

let Y be the second point of intersection of the line XP with the sphere, then

XP

PY
=

2(X,P ) − (P, P ) − 1

(P, P ) − 1
.

Proof of the Lemma: Every point on the line joining X and P has the form X + s(P −X) =

(1 − s)X + sP where s = 0, corresponds to X, and s = 1 corresponds to P . It meets the sphere

when s satisfies

((1 − s)X + sP, (1 − s)X + sP ) − 1 = 0 .
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Expanding, we get

(1 − s)2 · (X,X) + 2(1 − s)s · (X,P ) + s2 · (P, P ) − 1 = 0 .

Using (X,X) = 1 we get

s(−2 + s + 2(1 − s) · (X,P ) + s · (P, P )) = 0 .

This equation has two solutions: s = 0 corresponds to X, and the one corresponding to Y is:

s =
2(1 − (X,P ))

1 − 2(X,P ) + (P, P )
.

Hence
XP

PY
=

1

s− 1
=

2(X,P ) − (P, P ) − 1

(P, P ) − 1
.

Proof of Theorem 2: Without loss of generality, the sphere is centered at the origin, and has

radius 1. The center of mass of the points Xi is

C :=
1

n

(
n∑

i=1

Xi

)
.

The condition
n∑

i=1

XiP

PYi
= n ,

thanks to the lemma, is
n∑

i=1

2(Xi, P ) − (P, P ) − 1

(P, P ) − 1
= n ,

which is easily seen to be equivalent to

(P − C/2, P − C/2) = (C/2, C/2) .
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