Exponents

Doron ZEILBERGER ${ }^{1}$

Algebra

In algebra we have symbols and numbers mixed up. The notation is confusing. $a b$ means a times b, i.e. $a \times b$, but we don't write the \times. But for numbers, we have to write the \times, since 23 means "twenty-three" and not 2 times 3 .

In algebra we have parantheses, which means do it first. They are very important.
Example: $3(a+b)$, means: first add up a and b then multiply by 3 . They are rules for getting rid of parentheses, called foiling. In this case we have $3(a)+3(b)=3 a+3 b$.

When we pronounce $3(a+b)$ we say " 3 times the quantity $a+b$.
Precedence: Mathematicians are lazy and often they don't write parentheses explicity, but use conventions of precedence.

First: All powers
Second: All multiplications and divisions
Third: all additions and subtractions
So $a+b c+d$ is really shorthand for $a+(b c)+d$. This is not to be confused with $(a+b)(c+d)$ which means something else completely.

Problem: Do $(3+11)(8-4)+7 \cdot 2-8 / 2$.

Exponents:

a^{n} means " a times a times $a \ldots$ times a ", where there are n of the a 's.
You can always spell-out numerical or symbolic powers.
Examples: $2^{3}=2 \times 2 \times 2=8$.
$a^{4}=a a a a$.
Important convention:

$$
a^{-n}=\frac{1}{a^{n}}
$$

[^0]
Examples:

$$
\begin{gathered}
2^{-3}=\frac{1}{2^{3}}=\frac{1}{8} \\
3^{-2}=\frac{1}{3^{2}}=\frac{1}{9} \\
(1 / 4)^{-2}=\frac{1}{(1 / 4)^{2}}=\frac{1}{1 / 16}=16
\end{gathered}
$$

Reminder:"The bottom of the bottom goes to the top"

$$
\frac{1}{\frac{1}{\text { Whatever }}}=\text { Whatever } .
$$

The Spelling-Out Method

$$
\frac{3^{-2}}{2^{-2}}=\frac{1 / 9}{1 / 4}=4 / 9
$$

Watch Out from a Common Mistake: The following is wrong!!!!

$$
\frac{3^{-2}}{2^{-2}}=\frac{3}{2}
$$

You can't "cancel-out" the the same thing (in our case -2) when they are exponents.
To be safe, always do the numerical part of exponent expressions by the spelling-out method.
Examples:
$5^{2}=5 \cdot 5=25$,
$(-5)^{2}=(-5) \cdot(-5)=25$ (remember: minus times minus is plus),
$-5^{2}=-\left(5^{2}\right)=-25$.
Watch out: -5^{2} is not $(-5)^{2}$. By the precedence rules you first do the power, $5^{2}=25$ and only then you do the - , getting $-25 .-5^{2}$ is the same as $-\left(5^{2}\right)$. On the other-hand, if they want you to do the - first and then do the power, then they need parantheses $(-5)^{2}$.

Do right now:

$2^{3}=$
$(-2)^{4}=$
$-2^{4}=$
$-(-5)^{2}=$
$-0.2^{3}=$
$(-0.2)^{3}=$
$\left(-\frac{3}{5}\right)^{2}=$
Properties of Exponents
Rule 1:

$$
(a b)^{n}=a^{n} b^{n} .
$$

Why is it true?: For example, when $n=3$, we have

$$
(a b)^{3}=(a b)(a b)(a b)=a b a b a b=a a a b b b=a^{3} b^{3} .
$$

Rule 2:

$$
x^{n} x^{m}=x^{n+m} .
$$

Why is it true?: For example, when $n=3, m=4$, we have

$$
x^{3} x^{4}=(x x x)(x x x x)=x x x x x x x=x^{7} .
$$

Rule 3:

$$
\frac{x^{n}}{x^{m}}=x^{n-m} .
$$

Why is it true?: For example, when $n=5, m=3$, we have

$$
\frac{x^{5}}{x^{3}}=\frac{x x x x x}{x x x}=x x=x^{2} .
$$

Rule 4

$$
\left(x^{m}\right)^{n}=x^{m n} .
$$

Why is it true?: For example, when $n=3, m=4$, we have

$$
\left(x^{3}\right)^{4}=\left(x^{3}\right)\left(x^{3}\right)\left(x^{3}\right)\left(x^{3}\right)=(x x x)(x x x)(x x x)(x x x)=x x x x x x x x x x x x x=x^{12} .
$$

Examples:

$$
\begin{aligned}
& x^{5} \cdot x^{4}=x^{5+4}=x^{9} \\
& z^{2} \cdot z^{5}=z^{2+5}=z^{7} \\
& \left(3^{2}\right)^{5}=3^{2 \cdot 5}=3^{10}
\end{aligned}
$$

$$
\begin{gathered}
\left(-\frac{2}{3} x^{2}\right)^{3}=(-1)^{3} \frac{2^{3}}{3^{3}}\left(x^{2}\right)^{3}=-\frac{8}{27} x^{6} \\
5 a^{7}\left(-4 a^{6}\right)=(5)(-4) a^{7} \cdot a^{6}=-20 a^{7+6}=-20 a^{13}
\end{gathered}
$$

Common Mistake (Watch Out!):

$$
\left(a^{6}\right)\left(a^{7}\right)=a^{42}(W R O N G!!!)
$$

$\left(a^{6}\right)^{7}=a^{42}$ is right!, but if 6 and 7 are at the same level then $\left(a^{6}\right)\left(a^{7}\right)=a^{6+7}=a^{13}$, i.e. you add the exponents not multiply them. But in

$$
\left(a^{6}\right)^{7}
$$

the 7 is "above" the 6 , so you multiply

Do right now!
$-3 a^{2}\left(4 a^{4}\right)=$
$-3 b^{3} a^{2}\left(3 a^{5} b\right)\left(2 a b^{2}\right)=$
$\left(3^{3}\right)^{4}=$
$\left(2^{5}\right)^{2} \cdot\left(2^{2}\right)^{5} \cdot 2^{4}=$
Writing with positive exponents
Remember

$$
x^{-n}=\frac{1}{x^{n}}
$$

Examples:

$$
3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}
$$

$$
\begin{gathered}
(-5)^{-2}=\frac{1}{(-5)^{2}}=\frac{1}{25} \\
(-2)^{-5}=\frac{1}{(-2)^{5}}=\frac{1}{-32}=-\frac{1}{32} . \\
\left(\frac{3}{4}\right)^{-2}=\frac{3^{-2}}{4^{-2}}=\frac{4^{2}}{3^{2}}=\frac{16}{9} .
\end{gathered}
$$

Do Right Now!:

$$
\begin{gathered}
\left(\frac{2}{3}\right)^{-3}= \\
\left(\frac{1}{3}\right)^{-2}+\left(\frac{1}{2}\right)^{-3}= \\
\left(\frac{1}{4}\right)^{-3}+\left(\frac{1}{4}\right)^{-2}=
\end{gathered}
$$

Simplifying complicated expressions

Example

$$
\left(5 y^{4}\right)^{-3}\left(2 y^{-2}\right)^{3}=\left(5^{-3} 2^{3}\right) y^{-12} \cdot y^{-6}=\frac{8}{125} y^{-18}=\frac{8}{125 y^{18}}
$$

Do right now!

$$
\begin{gathered}
\left(3 z^{-2}\right)^{3}\left(4 z^{-3}\right)^{2}= \\
\left(5 w^{-4}\right)^{2}\left(4 w^{-5}\right)^{3}=
\end{gathered}
$$

Dividing Exponents

Remember:

$$
\frac{x^{m}}{x^{n}}=x^{m-n}
$$

Careful: Don't do things in your head! Do it step-by-step. It is very easy to make mistakes by doing "mental math", remember "minus minus is plus".

Examples:

$$
\frac{x^{-1}}{x^{9}}=x^{-1-9}=x^{-10}=\frac{1}{x^{10}} .
$$

$$
\begin{gathered}
\frac{t^{-10}}{t^{-4}}=t^{-10--4}=t^{-6}=\frac{1}{t^{6}} \\
\left(\frac{8 x^{2} y}{4 x^{4} y^{-3}}\right)^{4}=\left(\frac{2 x^{2} y}{x^{4} y^{-3}}\right)^{4}= \\
2^{4}\left(x^{-2} y^{4}\right)^{4}=16\left(x^{-8} y^{16}\right)=\frac{16 y^{16}}{x^{8}}
\end{gathered}
$$

Do Right Now!

$$
\begin{gathered}
\frac{z^{-10}}{z^{-5}}= \\
\frac{w^{-3}}{w^{8}}= \\
\frac{x^{13}}{x^{18}}= \\
\left(\frac{6 x^{3} y^{2}}{3 x y^{-2}}\right)^{2}= \\
\left(\frac{16 x^{-3} y^{-2} z^{3}}{4 x^{-1} y^{2} z^{2}}\right)^{4}= \\
\left(\frac{9 x^{3} y^{3} z^{3}}{3 x^{-1} y^{-2} z^{-2}}\right)^{-1}=
\end{gathered}
$$

[^0]: 1 Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. zeilberg at math dot rutgers dot edu,
 http://www.math.rutgers.edu/~zeilberg .

