The Maximal number of floors a Building can have where you can tell the highest floor from where you can throw a glass ball without breaking it, if you have \mathbf{b} glass balls and are allowed \mathbf{t} throws is

$$
\binom{t}{b}+\binom{t}{b-1}+\ldots+\binom{t}{1}
$$

By Shalosh B. EKHAD

The statement of the title is equivalent to:
Prop. Let $T_{b}(x)$ be the minimal number of throws needed to determine the cut-off floor, in an x-floor building, where it is no longer safe to throw down a glass ball without breaking it, if you have b glass balls that you are allowed to break. Then

$$
T_{b}(x)=t \quad, \quad \text { if } \quad\binom{t-1}{b}+\binom{t-1}{b-1}+\ldots+\binom{t-1}{1}<x \leq\binom{ t}{b}+\binom{t}{b-1}+\ldots+\binom{t}{1}
$$

Proof: $T_{b}(x)$ obviously satisfies the dynamical-programming recurrence:

$$
T_{b}(x)=\min _{1 \leq i \leq x} \quad \max \left(T_{b-1}(i-1), T_{b}(x-i)\right)
$$

but so does the function on the right hand side, as a routine but somewhat tedious verification shows. The proposition follows by induction on b and x, starting with the obvious initial conditions $T_{1}(x)=x$ and $T_{b}(0)=0$.

Strategy: Without loss of generality let $x=\binom{t}{b}+\binom{t}{b-1}+\ldots+\binom{t}{1}$. The first ball has to be thrown from floor number $\binom{t-1}{b-1}+\binom{t-1}{b-2}+\ldots+\binom{t-1}{1}+1$. If it breaks use the $b-1$ remaining balls and proceed recursively for the floors below it. If it does not break make this floor the ground floor, and use $t-1$ throws (and the b balls) to tackle the remaining $x=\binom{t-1}{b}+\binom{t-1}{b-1}+\ldots+\binom{t-1}{1}$ floors above it.

Acknowledgement: This apparently ancient puzzle was brought to my attention by Nati Linial, via my master, Doron Zeilberger.

First version: Nov. 7, 2010. This version: Nov. 10, 2010.

