The Maximal number of floors a Building can have where you can tell the highest floor from where you can throw a glass ball without breaking it, if you have \mathbf{b} glass balls and are allowed \mathbf{t} throws is

$$
\binom{t}{b}+\binom{t}{b-1}+\ldots+\binom{t}{1}
$$

By Shalosh B. EKHAD

Indeed, let $F(b, t)$ be the quantity described in the title and let $G(b, t):=\binom{t}{b}+\binom{t}{b-1}+\ldots+\binom{t}{1}$. After the first throw, if the ball broke, the maximal number of floors that you can handle below it is $F(b-1, t-1)$, and if it didn't break, the maximum floors that you can handle above it is $F(b, t-1)$, so we have the recurrence $F(b, t)=F(b-1, t-1)+F(b, t-1)+1$ with the initial condition $F(1, t)=t$. By the Pascal-Chu-defining recurrence for the binomial coefficients, $G(b, t)=G(b-1, t-1)+G(b, t-1)+1$. Since $G(1, t)=t$, the statement follows by induction on b and t.

The strategy is clear. Throw a ball from floor $G(b-1, t-1)+1$. If it breaks explore (recursively) the $G(b-1, t-1)$ floors below, (with the remaining $b-1$ balls and $t-1$ throws). Otherwise, explore (recursively) the $G(b, t-1)$ floors above.

Acknowledgement: This apparently ancient puzzle was brought to my attention by Nati Linial, via my master, Doron Zeilberger.

First version: Nov. 7, 2010. This version: Nov. 10, 2010.

