An Inelegant (but Short(!)) Proof of a Major Index Theorem of Garsia and Gessel (Verbose Version)

Doron ZEILBERGER ${ }^{1}$

Recall Adriano Garsia's favorite notation: $\chi(A)=1$ if A is true, and $\chi(A)=0$ if A is false. For example $\chi($ MathIsFun $)=1, \chi($ HeleneBarceloIsAGoodEditor $)=0$. Also recall that the major index of any list of integers $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ (in particular a permutation) is defined by $\operatorname{maj}(\pi):=\sum_{i=1}^{n-1} i \chi\left(\pi_{i}>\pi_{i+1}\right)$. Let $\theta=\theta_{1} \ldots \theta_{a}$ and $\pi=\pi_{1} \ldots \pi_{b}$ be two disjoint lists of distinct integers. Let $S(\theta, \pi)$ be the set of (a+b)!/(a!b!) mergings (suffles) of θ and π. Let $(q)_{n}:=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)$. Moti Novick $[\mathrm{N}]$ has recently found an elegant bijective proof of the following

Theorem (Garsia and Gessel[GG]):

$$
\begin{equation*}
\sum_{\sigma \in S(\theta, \pi)} q^{\operatorname{maj}(\sigma)}=\frac{(q)_{a+b}}{(q)_{a}(q)_{b}} q^{m a j(\theta)+\operatorname{maj}(\pi)} . \tag{Moti}
\end{equation*}
$$

In this short note I will present an inelegant, induction proof, by proving, more generally:
Lemma: Let $S_{1}(\theta, \pi)$ be the subset of $S(\theta, \pi)$ whose last entry is θ_{a}, and let $S_{2}(\theta, \pi)$ be the subset of $S(\theta, \pi)$ whose last entry is π_{b}, then

$$
\begin{align*}
& \sum_{\sigma \in S_{1}(\theta, \pi)} q^{\operatorname{maj}(\sigma)}=\frac{(q)_{a+b-1}}{(q)_{a-1}(q)_{b}} q^{\operatorname{maj}(\theta)+\operatorname{maj}(\pi)+b \chi\left(\pi_{b}>\theta_{a}\right)}, \tag{Adriano}\\
& \quad \sum_{\sigma \in S_{2}(\theta, \pi)} q^{\operatorname{maj}(\sigma)}=\frac{(q)_{a+b-1}}{(q)_{a}(q)_{b-1}} q^{\operatorname{maj}(\theta)+\operatorname{maj}(\pi)+a \chi\left(\pi_{b}<\theta_{a}\right)} . \tag{Ira}
\end{align*}
$$

Note that adding-up (Adriano) and (Ira) gives (Moti). Let's call the left-sides of (Adriano) and (Ira) $F_{1}(a, b)$ and $F_{2}(a, b)$ respectively, and let's call their right-sides $G_{1}(a, b)$ and $G_{2}(a, b)$ respectively. It is immediate that $\left(F_{1}, F_{2}\right)=\left(G_{1}, G_{2}\right)$ when $a=0$ or $b=0$, and the fact that $\left(F_{1}, F_{2}\right)=\left(G_{1}, G_{2}\right)$ for all $a, b \geq 0$ follows from the fact that both $\left(X_{1}, X_{2}\right)=\left(F_{1}, F_{2}\right)$ and $\left(X_{1}, X_{2}\right)=\left(G_{1}, G_{2}\right)$ satisfy the recurrence

$$
\begin{gathered}
X_{1}(a, b)=q^{(a+b-1) \chi\left(\theta_{a-1}>\theta_{a}\right)} X_{1}(a-1, b)+q^{(a+b-1) \chi\left(\pi_{b}>\theta_{a}\right)} X_{2}(a-1, b) \\
X_{2}(a, b)=q^{(a+b-1) \chi\left(\theta_{a}>\pi_{b}\right)} X_{1}(a, b-1)+q^{(a+b-1) \chi\left(\pi_{b-1}>\pi_{b}\right)} X_{2}(a, b-1) .
\end{gathered}
$$

The proof for $\left(F_{1}, F_{2}\right)$ is left to the reader. Let's prove it for $\left(G_{1}, G_{2}\right)$. We will only prove the first identity. The second one is also left to the reader.

[^0]We have to prove that

$$
G_{1}(a, b)-q^{(a+b-1) \chi\left(\theta_{a-1}>\theta_{a}\right)} G_{1}(a-1, b)-q^{(a+b-1) \chi\left(\pi_{b}>\theta_{a}\right)} G_{2}(a-1, b)=0 \quad . \quad(\text { HaImEfes })
$$

By definition:

$$
\begin{aligned}
& G_{1}(a, b)=\frac{(q)_{a+b-1}}{(q)_{a-1}(q)_{b}} q^{\operatorname{maj}\left(\theta_{1} \ldots \theta_{a}\right)+\operatorname{maj}\left(\pi_{1} \ldots \pi_{b}\right)+b \chi\left(\pi_{b}>\theta_{a}\right)}, \\
& G_{2}(a, b)=\frac{(q)_{a+b-1}}{(q)_{a}(q)_{b-1}} q^{\operatorname{maj}\left(\theta_{1} \ldots \theta_{a}\right)+\operatorname{maj}\left(\pi_{1} \ldots \pi_{b}\right)+a \chi\left(\pi_{b}<\theta_{a}\right)} .
\end{aligned}
$$

Replacing a by $a-1$ we have

$$
\begin{gathered}
G_{1}(a-1, b)=\frac{(q)_{a+b-2}}{(q)_{a-2}(q)_{b}} q^{m a j\left(\theta_{1} \ldots \theta_{a-1}\right)+\operatorname{maj}\left(\pi_{1} \ldots \pi_{b}\right)+b \chi\left(\pi_{b}>\theta_{a-1}\right)}, \\
G_{2}(a-1, b)=\frac{(q)_{a+b-2}}{(q)_{a-1}(q)_{b-1}} q^{\operatorname{maj}\left(\theta_{1} \ldots \theta_{a-1}\right)+\operatorname{maj}\left(\pi_{1} \ldots \pi_{b}\right)+(a-1) \chi\left(\pi_{b}<\theta_{a-1}\right)} .
\end{gathered}
$$

Substituting in the left side of (HaImEfes), we have to prove:

$$
\begin{gathered}
\frac{(q)_{a+b-1}}{(q)_{a-1}(q)_{b}} q^{\operatorname{maj}\left(\theta_{1} \ldots \theta_{a}\right)+\operatorname{maj}\left(\pi_{1} \ldots \pi_{b}\right)+b \chi\left(\pi_{b}>\theta_{a}\right)} \\
-q^{(a+b-1) \chi\left(\theta_{a-1}>\theta_{a}\right)} \cdot \frac{(q)_{a+b-2}}{(q)_{a-2}(q)_{b}} q^{\operatorname{maj}\left(\theta_{1} \ldots \theta_{a-1}\right)+\operatorname{maj}\left(\pi_{1} \ldots \pi_{b}\right)+b \chi\left(\pi_{b}>\theta_{a-1}\right)} \\
-q^{(a+b-1) \chi\left(\pi_{b}>\theta_{a}\right)} \cdot \frac{(q)_{a+b-2}}{(q)_{a-1}(q)_{b-1}} q^{\operatorname{maj}\left(\theta_{1} \ldots \theta_{a-1}\right)+\operatorname{maj}\left(\pi_{1} \ldots \pi_{b}\right)+(a-1) \chi\left(\pi_{b}<\theta_{a-1}\right)}=0
\end{gathered}
$$

Dividing by $\frac{(q)_{a+b-2}}{(q)_{a-1}(q)_{b}}$, we have to prove

$$
\begin{gathered}
\left(1-q^{a+b-1}\right) q^{\operatorname{maj}\left(\theta_{1} \ldots \theta_{a}\right)+\operatorname{maj}\left(\pi_{1} \ldots \pi_{b}\right)+b \chi\left(\pi_{b}>\theta_{a}\right)} \\
-q^{(a+b-1) \chi\left(\theta_{a-1}>\theta_{a}\right)} \cdot\left(1-q^{a-1}\right) q^{\operatorname{maj}\left(\theta_{1} \ldots \theta_{a-1}\right)+\operatorname{maj}\left(\pi_{1} \ldots \pi_{b}\right)+b \chi\left(\pi_{b}>\theta_{a-1}\right)} \\
-q^{(a+b-1) \chi\left(\pi_{b}>\theta_{a}\right)} \cdot\left(1-q^{b}\right) q^{\operatorname{maj}\left(\theta_{1} \ldots \theta_{a-1}\right)+\operatorname{maj}\left(\pi_{1} \ldots \pi_{b}\right)+(a-1) \chi\left(\pi_{b}<\theta_{a-1}\right)}=0 .
\end{gathered}
$$

But

$$
\operatorname{maj}\left(\theta_{1} \ldots \theta_{a}\right)=\operatorname{maj}\left(\theta_{1} \ldots \theta_{a-1}\right)+(a-1) \chi\left(\theta_{a-1}>\theta_{a}\right)
$$

so we have to prove:

$$
\begin{aligned}
& \left(1-q^{a+b-1}\right) q^{\operatorname{maj}\left(\theta_{1} \ldots \theta_{a-1}\right)+(a-1) \chi\left(\theta_{a-1}>\theta_{a}\right)+\operatorname{maj}\left(\pi_{1} \ldots \pi_{b}\right)+b \chi\left(\pi_{b}>\theta_{a}\right)}- \\
& q^{(a+b-1) \chi\left(\theta_{a-1}>\theta_{a}\right)} \cdot\left(1-q^{a-1}\right) q^{\operatorname{maj}\left(\theta_{1} \ldots \theta_{a-1}\right)+\operatorname{maj}\left(\pi_{1} \ldots \pi_{b}\right)+b \chi\left(\pi_{b}>\theta_{a-1}\right)} \\
& -q^{(a+b-1) \chi\left(\pi_{b}>\theta_{a}\right)} \cdot\left(1-q^{b}\right) q^{\operatorname{maj}\left(\theta_{1} \ldots \theta_{a-1}\right)+\operatorname{maj}\left(\pi_{1} \ldots \pi_{b}\right)+a \chi\left(\pi_{b}<\theta_{a-1}\right)}=0
\end{aligned}
$$

Dividing both sides by $q^{\operatorname{maj}\left(\theta_{1} \ldots \theta_{a-1}\right)+\operatorname{maj}\left(\pi_{1} \ldots \pi_{b}\right)}$, we have to prove

$$
\left(1-q^{a+b-1}\right) q^{(a-1) \chi\left(\theta_{a-1}>\theta_{a}\right)+b \chi\left(\pi_{b}>\theta_{a}\right)}-q^{(a+b-1) \chi\left(\theta_{a-1}>\theta_{a}\right)} \cdot\left(1-q^{a-1}\right) q^{b \chi\left(\pi_{b}>\theta_{a-1}\right)}
$$

$$
-q^{(a+b-1) \chi\left(\pi_{b}>\theta_{a}\right)} \cdot\left(1-q^{b}\right) q^{(a-1) \chi\left(\pi_{b}<\theta_{a-1}\right)}=0
$$

Combining powers of q, we have to prove:

$$
\begin{gathered}
\left(1-q^{a+b-1}\right) q^{(a-1) \chi\left(\theta_{a-1}>\theta_{a}\right)+b \chi\left(\pi_{b}>\theta_{a}\right)}-\left(1-q^{a-1}\right) q^{b \chi\left(\pi_{b}>\theta_{a-1}\right)+(a+b-1) \chi\left(\theta_{a-1}>\theta_{a}\right)} \\
-\left(1-q^{b}\right) q^{(a-1) \chi\left(\pi_{b}<\theta_{a-1}\right)+(a+b-1) \chi\left(\pi_{b}>\theta_{a}\right)}=0
\end{gathered}
$$

We have six cases to consider according to the relative rankings of $\theta_{a-1}, \theta_{a}, \pi_{b}$.
Case 123: $\theta_{a-1}<\theta_{a}<\pi_{b}$. We have to prove

$$
\left(1-q^{a+b-1}\right) q^{b}-\left(1-q^{a-1}\right) q^{b}-\left(1-q^{b}\right) q^{(a+b-1)}=0
$$

Dividing by q^{b}, we have to prove

$$
\left(1-q^{a+b-1}\right)-\left(1-q^{a-1}\right)-\left(1-q^{b}\right) q^{(a-1)}=0
$$

Expanding, we have, to prove

$$
1-q^{a+b-1}-1+q^{a-1}-q^{a-1}+q^{a+b-1}=0
$$

and this is indeed true.

Case 132: $\theta_{a-1}<\pi_{b}<\theta_{a}$. We have to prove

$$
\left(1-q^{a+b-1}\right) q^{0}-\left(1-q^{a-1}\right) q^{b}-\left(1-q^{b}\right) q^{0}=0
$$

Expanding, we get:

$$
1-q^{a+b-1}-q^{b}+q^{a+b-1}-1+q^{b}=0
$$

and this is indeed true.

Case 213: $\theta_{a}<\theta_{a-1}<\pi_{b}$:

$$
\left(1-q^{a+b-1}\right) q^{(a-1)+b}-\left(1-q^{a-1}\right) q^{b+(a+b-1)}-\left(1-q^{b}\right) q^{a+b-1}=0
$$

Dividing by q^{a+b-1}, we have to prove

$$
\left(1-q^{a+b-1}\right)-\left(1-q^{a-1}\right) q^{b}-\left(1-q^{b}\right)=0
$$

Expanding, we have to prove

$$
1-q^{a+b-1}-q^{b}+q^{a+b-1}-1+q^{b}=0
$$

and this is indeed true.

Case 231: $\theta_{a}<\pi_{b}<\theta_{a-1}$. We have to prove

$$
\left(1-q^{a+b-1}\right) q^{(a-1)+b}-\left(1-q^{a-1}\right) q^{a+b-1}-\left(1-q^{b}\right) q^{a-1+(a+b-1)}=0 .
$$

Dividing by q^{a+b-1}, we have to prove

$$
\left(1-q^{a+b-1}\right)-\left(1-q^{a-1}\right)-\left(1-q^{b}\right) q^{a-1}=0 .
$$

Expanding, we have to prove

$$
1-q^{a+b-1}-1+q^{a-1}-q^{a-1}+q^{a+b-1}=0
$$

and this is indeed true.
Case 312: $\pi_{b}<\theta_{a-1}<\theta_{a}$:

$$
\left(1-q^{a+b-1}\right) q^{0}-\left(1-q^{a-1}\right) q^{0}-\left(1-q^{b}\right) q^{a-1}=0
$$

Expanding, we have to prove

$$
1-q^{a+b-1}-1+q^{a-1}-q^{a-1}+q^{a+b-1}=0
$$

and this is indeed true.
Case 321: $\pi_{b}<\theta_{a}<\theta_{a-1}$:

$$
\left(1-q^{a+b-1}\right) q^{a-1}-\left(1-q^{a-1}\right) q^{a+b-1}-\left(1-q^{b}\right) q^{a-1}=0 .
$$

Dividing by q^{a-1}, we have to prove

$$
\left(1-q^{a+b-1}\right)-\left(1-q^{a-1}\right) q^{b}-\left(1-q^{b}\right)=0 .
$$

Expanding, we have to prove

$$
1-q^{a+b-1}-q^{b}+q^{a+b-1}-1+q^{b}=0
$$

and this is indeed true.
Remarks: 1. Moti Novick's elegant bijection also preserves equidistribution over Inverse Descent Classes. 2. It would be interesting to bijectify the above inductive proof, along the lines of [MZ], and see if the resulting bijection is identitical, or similar, to Moti Novick's elegant bijection.

References:

[GG] Adriano M. Garsia and Ira Gessel, Permutation statistics and partitions, Advances in Mathematics 31(1979), 288-305.
[MZ] Philip Matchett Wood and Doron Zeilberger, A Translation Method for Finding Combinatorial Bijections, to appear in Annals of Combinatorics.
Available from http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/trans-method.html .
[N] Moti Novick, A Bijective proof of a major index theorem of Garsia and Gessel, preprint, Hebrew University of Jerusalem.

[^0]: 1 Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. zeilberg at math dot rutgers dot edu,
 http://www.math.rutgers.edu/~zeilberg/ . First version: March 25, 2009. This verbose version: March 31, 2009. Supported in part by the NSF.

