The Number of $1 \ldots$-..dvoiding Permutations of Length $d+r$ for SYMBOLIC d but Numeric r

By Shalosh B. EKHAD, Nathaniel SHAR, and Doron ZEILBERGER

Dedicated to Ira Martin GESSEL (b. April 9, 1951), on his millionth ${ }_{2}$ birthday

Preface: How many permutations are there of length googol+30 avoiding an increasing subsequence of length googol?

This number is way too big for our physical universe, but the number of permutations of length googol +30 that contain at least one increasing subsequence of length googol is a certain integer that may be viewed in http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/gessel64.pdf. Hence the number of permutations of length googol +30 avoiding an increasing subsequence of length googol is $($ googol +30$)$! minus the above small number.

Counting the "Bad Guys"

Recall that thanks to Robinson-Schensted ($[R o b][S c]$), the number of permutations of length n that do not contain an increasing subsequence of length d is given by

$$
G_{d}(n):=\sum_{\substack{\lambda \not p n \\ \# \operatorname{rows}(\lambda)<d}} f_{\lambda}^{2},
$$

where λ denotes a typical Young diagram, and f_{λ} is the number of Standard Young tableaux whose shape is λ.

Hence the number of permutations of length n that do contain an increasing subsequence of length d is

$$
B_{d}(n):=\sum_{\substack{\lambda \not p n \\ \# \operatorname{rows}(\lambda) \geq d}} f_{\lambda}^{2} .
$$

Since the total number of permutations of length n is $n!([\mathrm{B}])$, if we know how to find $B_{d}(n)$, we would know immediately $G_{d}(n)=n!-B_{d}(n)$, at least if we leave n ! alone as a factorial, rather than spell it out.

Recall that the Hook Length formula (see [Wiki]) tells you that if λ is a Young diagram then

$$
f_{\lambda}=\frac{n!}{\prod_{c \in \lambda} h(c)}
$$

where the product is over all the n cells of the Young diagram, and the hook-lenght, $h(c)$, of a cell $c=(i, j)$, is $\left(\lambda_{i}-i\right)+\left(\lambda_{j}^{\prime}-j\right)+1$, where λ^{\prime} is the conjugate diagram, where the rows become columns and vice-versa.

Let r be a fixed integer, then for symbolic d, valid for $d \geq r-1$, any Young diagram with at least d rows, and with $d+r$ cells, can be written, for some Young diagram $\mu=\left(\mu_{1}, \ldots, \mu_{r}\right)$, with $\leq r$ cells, (where we add zeros to the end if the number of parts of μ is less than r) as

$$
\lambda=\left(1+\mu_{1}, \ldots, 1+\mu_{r}, 1^{d-r+r^{\prime}}\right)
$$

where $r^{\prime}=r-|\mu|$. For such a shape λ, with at least d rows,

$$
\prod_{c \in \lambda} h(c)=\left(\prod_{c \in \mu} h(c)\right) \cdot\left(\left(d+r^{\prime}+\mu_{1}\right)\left(d+r^{\prime}-1+\mu_{2}\right) \cdots\left(d+r^{\prime}-r+1+\mu_{r}\right)\right) \cdot\left(d-r+r^{\prime}\right)!
$$

Hence f_{λ}, that is $(d+r)$! divided by the above, is a certain specific number times a certain polynomial in d. Since, for a specific, numeric, r, there are only finitely many Young diagrams with at most r cells, the computer can find all of them, compute the polynomial corresponding to each of them, square it, and add-up all these terms, getting an explicit polynomial expression, in the variable d, for $B_{d}(d+r)$, the number of permutations of length $d+r$ that contain an increasing subsequence of length d. As we said above, from this we can find $G_{d}(d+r)=(d+r)!-B_{d}(d+r)$, valid for symbolic $d \geq r-1$.
$\mathbf{B}_{\mathbf{d}}(\mathbf{d}+\mathbf{r})$ for \mathbf{r} from 0 to $\mathbf{3 0}$

$$
\begin{gathered}
B_{d}(d)=1 \\
B_{d}(d+1)=d^{2}+1 \\
B_{d}(d+2)=\frac{1}{2} d^{4}+d^{3}+\frac{1}{2} d^{2}+d+3 \\
B_{d}(d+3)=\frac{1}{6} d^{6}+d^{5}+\frac{5}{3} d^{4}+\frac{2}{3} d^{3}+\frac{19}{6} d^{2}+\frac{31}{3} d+11 \\
B_{d}(d+4)=\frac{1}{24} d^{8}+\frac{1}{2} d^{7}+\frac{25}{12} d^{6}+\frac{19}{6} d^{5}+\frac{29}{24} d^{4}+9 d^{3}+\frac{247}{6} d^{2}+\frac{395}{6} d+47 \\
B_{d}(d+5)=\frac{1}{120} d^{10}+\frac{1}{6} d^{9}+\frac{31}{24} d^{8}+\frac{14}{3} d^{7}+\frac{823}{120} d^{6}+\frac{67}{30} d^{5}+\frac{653}{24} d^{4}+\frac{959}{6} d^{3}+\frac{10459}{30} d^{2}+\frac{3981}{10} d+239
\end{gathered}
$$

For $B_{d}(d+r)$ for r from 6 up to 30 , see
http://www.math.rutgers.edu/~zeilberg/tokhniot/oGessel64a.

Sequences

The sequence $G_{3}(n)$ is the greatest celeb in the kingdom of combinatorial sequences [the subject of an entire book ([St]) by Ira Gessel's illustrious academic father, Richard Stanley], the superfamous A000108 in Neil Sloane's legendary database ([Sl]). $G_{4}(n)$, while not in the same league as the Catalan sequence, is still moderately famous, A005802. $G_{5}(n)$ is $\mathbf{A 0 4 7 8 8 9}, G_{6}(n)$ is A047890, $G_{7}(n)$ is A052399, $G_{8}(n)$ is A072131, $G_{9}(n)$ is A072132, $G_{10}(n)$ is $\mathbf{A 0 7 2 1 3 3}, G_{11}(n)$ is $\mathbf{A 0 7 2 1 6 7}$, but $G_{d}(n)$ for $d \geq 12$ are absent (for a good reason, one must stop somewhere!). Also the flattened version of the double-sequence, $\left\{G_{d}(n)\right\}$, for $1 \leq d \leq n \leq 45$ is A047887. Using the
polynomials $B_{d}(d+r)$, we computed the first $2 d+1$ terms of $G_{d}(n)$ for $d \leq 30$. See http://www.math.rutgers.edu/~zeilberg/tokhniot/oGessel64b.

But this method can only go up to $2 d+1$ terms of the sequence $G_{d}(n)$, and of course, the first $d-1$ terms are trivial, namely $n!$. Can we find the first 100 terms (or whatever) for the sequences $G_{d}(n)$ for d up to 20 , and beyond, efficiently?

Encore: Efficient Computer-Algebra Implementation of Ira Gessel's AMAZING Determinant Formula

Recall Ira Gessel's [G] famous expression for the generating function of $G_{d}(n) / n!^{2}$, canonized in the bible ([W], p. 996, Eq. (5)). Here it is:

$$
\sum_{n \geq 0} \frac{G_{d}(n)}{n!^{2}} x^{2 n}=\operatorname{det}\left(I_{|i-j|}(2 x)\right)_{i, j=1, \ldots, d}
$$

in which $I_{\nu}(t)$ is (the modified Bessel function)

$$
I_{\nu}(t)=\sum_{j=0}^{\infty} \frac{\left(\frac{1}{2} t\right)^{2 j+\nu}}{j!(j+\nu)!}
$$

Can we use this to compute the first 100 terms of, say, $G_{20}(n)$?
While computing numerical determinants is very fast, computing symbolic ones is a different story. First, do not get scared by the "infinite" power series. If we are only interested in the first N terms of $G_{d}(n)$, then it is safe to truncate the series up to $t^{2 N}$, and take the determinant of a $d \times d$ matrix with polynomial entries. If you use the vanilla determinant in a computer-algebra system such as Maple, it would be very inefficient, since the degree of the determinant is much larger than $2 N$. But a little cleverness can make things more efficient. The Maple package Gessel64, available free of charge from
http://www.math.rutgers.edu/~zeilberg/tokhniot/Gessel64
accompanying this article, has a procedure $\operatorname{Seq} \operatorname{Ira}(\mathrm{k}, \mathrm{N})$ that computes the first N terms of $G_{k}(n)$, using a division-free algorithm (see [Rot]) over an appropriate ring to compute the determinant in Gessel's famous formula.

```
SeqIra:=proc(k,N) local ira,t,i,j, R:
    R := table():
    R['0`] := 0:
    R['1'] := 1:
    R[`+`] := `+`:
```

```
R[`-`] := '-`:
R[`*`] := proc(p, q): return add(coeff(p*q, t, i)*t**i, i=0..2*N): end:
R['=`] := proc(p, q): return evalb(p = q): end:
ira:=expand(LinearAlgebra[Generic] [Determinant][R](Matrix([seq([seq(Iv(abs(i-j),t,2*N),
                                    j=1..k-1)],
i=1..k-1)]))):
[seq(coeff(ira,t,2*i)*i!**2,i=1..N)]:
```

end:

In the above code, procedure $\operatorname{Iv}(\mathrm{v}, \mathrm{t}, \mathrm{N})$ computes the truncated modified Bessel function that shows up in Gessel's determinant, and it is short enough to reproduce here:

Iv:=proc(v,t,N) local j: add(t**(2*j+v)/j!/(j+v)!,j=0..trunc((N-v)/2)+1): end:
Using this procedure, the first-named author computed (in 4507 seconds) the first 100 terms of each of the sequences $G_{d}(n)$ for $3 \leq d \leq 20$, and could have gone much further.

See http://www.math.rutgers.edu/~zeilberg/tokhniot/oGessel64c.

HAPPY 64th BIRTHDAY, IRA!

References

[B] Rabbi Levi Ben Gerson, Sefer Maaseh Hoshev, Avignon, 1321.
[G] I. Gessel, Symmetric functions and P-recursiveness, Journal of Combinatorial Theory Series A 53 (1990), 257-285; http://people.brandeis.edu/~ gessel/homepage/papers/dfin.pdf.
[Rob] G. de B. Robinson, On the representations of S_{n}, Amer. J. Math. 60 (1938), 745-760.
[Rot] G. Rote, Division-Free Algorithms for the Determinant and Pfaffian: Algebraic and Combinatorial Approaches, Computational Discrete Mathematics: Advanced Lectures (2001), 119-135.
[Sc] C. E. Schensted, Largest increasing and decreasing subsequences, Canad. J. Math 13 (1961), 179-191.
[Sl] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences; http://oeis.org
[St] R. P. Stanley, "Catalan Numbers", Cambridge University Press, 2015.
[Wiki] The Wikipedia Foundation, Hook Length Formula;
http://en.wikipedia.org/wiki/Hook_length_formula
[W] H. S. Wilf, Mathematics, an experimental science, in: "Princeton Companion to Mathematics", (W. Timothy Gowers, ed.), Princeton University Press, 2008, 991-1000;
http://www.math.rutgers.edu/~zeilberg/akherim/HerbMasterpieceEM.pdf

Shalosh B. Ekhad, c/o D. Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.

Nathaniel Shar, Department of Mathematics, Rutgers University (New Brunswick), Hill CenterBusch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.
nshar at math dot rutgers dot edu ; http://www.math.rutgers.edu/~nbs48/

Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill CenterBusch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.
zeilberg at math dot rutgers dot edu ; http://www.math.rutgers.edu/~zeilberg/

Published in The Personal Journal of Shalosh B. Ekhad and Doron Zeilberger (http://www.math.rutgers.edu/~zeilberg/pj.html) and arxiv.org.

April 9, 2015

