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Dedicated to Georgy Petrovich EGORYCHEV on his 70th birthday

Why I hate the Continuous and Love the Discrete

I have always loved the discrete and hated the continuous. Perhaps it was the trauma of having to
go through the usual curriculum of “rigorous” , Cauchy-Weierstrass-style, real calculus, where one
has all those tedious, pedantic and utterly boring, ε− δ proofs. The meager (obvious) conclusions
hardly justify the huge mental efforts!

Complex Analysis was a different story. Even though officially “continuous”, it has the feel of
discrete math, and one can “cheat” and consider power series as formal power series, and I really
loved it.

Georgy P. Egorychev: A Bridge-Builder between the Discrete and the Continuous

Eight years after I finished my doctorate, I came across Egorychev’s fascinating modern classic[E],
about using the methods of complex analysis to evaluate (discrete) combinatorial sums. That was
a pioneering ecumenical work, that influenced me greatly. Its content, of course, but especially its
spirit and philosophy.

The Discrete vs. The Continuous: A Two-Way Street

Egorychev went from the discrete to the continuous. But the bridge that he helped build can be
transversed both ways. With the advent of so-called Wilf-Zeilberger (WZ) theory[WZ] one can
indeed go both ways. Sometimes the discrete is easier to handle, and sometimes the continuous. But
nothing is really continuous. There is only the discrete and the “continuous”, the quotation-marks
indicating that it is really discrete in disguise, and, on a fundamental level, continuous mathematics
is just a degenerate case of the discrete, as I have already preached in [Z1].

Initially, I was hoping to write something about interfacing Egorychev’s brilliant approach with WZ
theory, but meanwhile I got distracted by another project, that also has the discrete-continuous
theme, namely for automatically deriving limit laws in probability theory, and decided to make this
my tribute to Georgy Egorychev’s 70th birthday.

1 Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen

Rd., Piscataway, NJ 08854-8019, USA. zeilberg at math dot rutgers dot edu ,

http://www.math.rutgers.edu/~zeilberg . First version: Dec. 4, 2008. This version: Dec. 22, 2008. Accompa-

nied by Maple packages CLT and AsymptoticMoments downloadable from the webapge of this article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/georgy.html, where one can also find some sam-

ple input and output files. Supported in part by the NSF.

1



Probability Limit Laws

One of the central themes of modern probability theory are limit laws, the most celebrated one
being the Central Limit Theorem, that roughly says that if you repeat the same experiment many
times, and the “atomic” experiment can have an arbitrary probability distribution (with finite
variance), then in the limit, after one “centralizes” and “normalizes” (divides by the so-called
standard deviation) one gets the (continuous) Standard Normal Distribution:

Pr(a ≤ X ≤ b) =
1√
2π

∫ b

a

e−x
2/2 dx .

The iconic example of a discrete probability distribution is the random variable “number of Heads”
upon tossing a (loaded) coin n times, whose probability distribution is given by the Binomial
Distribution, usually denoted by B(n, p). It describes the experiment of tossing a coin n times
with the probability of Heads being p. The “sample space” is the set of all 2n outcomes {H,T}n,
and the probability of an “atomic” event is pNumberOfHeads(1 − p)NumberOfTails, and hence the
probability of the “compound event”, NumberOfHeads=k, is

(
n
k

)
pk(1−p)n−k. If we call this random

variable Xn, then its mean (see below) is np and its variance (also see below) is σ2 := np(1 − p).
Introducing the centralized and normalized random variable

Zn :=
Xn − np√
np(1− p) ,

The “original” (De Moivre-Laplace) Central Limit Theorem asserts that

Zn → N ,

where N is the Standard Normal Distribution.

More generally, quoting from Feller[F], p.244:

Central Limit Theorem. Let {Xk} be a sequence of mutually independent random variables
with a common distribution. Suppose that µ := E[Xk] and σ2 := V ar[Xk] exist and let Sn =
X1 + . . .+Xn. Then for every fixed β,

P
{

Sn − nµ
σ
√
n

< β

}
→ N (β) ,

where N (x) is the normal distribution defined above.

There are many extensions and generalizations. In this article we will present yet another extension,
but in a completely different direction, and because of the heavy use of computers, we are pretty
sure that these are new results.

A Quick Review of Discrete Probability Distributions

The most basic scenario is that we have a finite set S, called the sample space, consisting of atomic
events, and each s ∈ S has a certain probability ( a number in [0, 1]) attached to it, where, of
course,

∑
s∈S ps = 1.
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We also have a random variable X : S → R, where R is a finite set of real numbers (often, but not
always, of integers), and one is interested in its probability distribution Pr({s ∈ S|X(s) = r}). A
convenient way to encode it is via its, probability generating function ,

f(t) :=
∑
r∈R

Pr(X(s) = r) tr ,

that is easily seen to be equal to the weighted counting of the set S∑
s∈S

pst
X(s) .

The most important number associated to a random variable is its expectation

µ = E[X] :=
∑
s∈S

psX(s) .

This is also called the first moment. Analogously, the higher moments (about the mean) are defined
by

mr(X) :=
∑
s∈S

ps(X(s)− µ)r .

It follows from “general nonsense” that, under some mild conditions (that are always satisfied for
finite sets), the moments completely determine the probability distribution (even in the general,
“infinite”, case), and the probability distribution can be gotten by inverse-Fourier-Transforming
the moment (exponential) generating function

∑
rmr(it)r/r! = E[exp(itX)].

Another set of moments, easier to work with, are the factorial moments

fr(X) :=
∑
s∈S

ps(X(s)− µ)(r) ,

where X(r) is the falling factorial:

X(r) := X(X − 1)(X − 2) . . . (X − r + 1) .

It turns out to be easier (see below) to compute the factorial moments, but once these are known,
one can get the ordinary moments, thanks to the connection formula (e.g. [GKP], p. 250):

Xr =
r∑

k=1

S(r, k)X(k) ,

where S(r, k) are the Stirling Numbers of the Second kind, that may be defined by the recurrence
([GKP], p. 250):

S(r, k) = kS(r − 1, k) + S(r − 1, k − 1) , (StirlingRecurrence)
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subject to the initial condition S(1, k) = 1 if k = 1 and S(1, k) = 0 otherwise.

It follows that the moments can be computed in terms of the factorial moments:

mr =
r∑

k=1

S(r, k)fr .

Computing Moments

Suppose that we have the probability generating function f(t). We can find its mean, µ, by
differentiating with respect to t, and plugging-in t = 1:

µ = f ′(1) .

Immediately we can find the probability generating function of the centralized random variable
XC(s) := X(s)− µ. It is simply

f(t)
tµ

.

From now, let’s assume that all our random variables have mean 0, in other words, assume that
we have already done this centralization, and let’s rename it f(t). Using the new, adjusted, f(t),
we can easily find the factorial moments, by taking successive derivatives, and substituting t = 1
at the end:

fr =
drf(t)
dtr

∣∣∣
t=1

.

Alternatively, we can consider f(1 + z) and do a Maclaurin expansion around z = 0:

f(1 + z) =
∞∑
r=0

fr
zr

r!
.

Repeating It n Times

So far what we said is true in general. A frequently occurring situation is when we repeat something
n times, like tossing a coin, or rolling a die, and we are interested in the sum of the outcomes. In
that case, we have a sequence of random variables whose probability generating function is

F (t)n ,

where F (t) is the probability generating function for the single event. For example, for tossing a
single coin, where the random variable is “number of Heads”, and the probability of a Head is p,
we have

F (t) =
pt+ (1− p)

tp
= p t1−p + (1− p) t−p ,

and for rolling a loaded (cubic) die, with its probabilities of landing on 1, 2, 3, 4, 5, 6 being p1, p2, p3, p4, p5, p6

respectively, (where of course p1 + . . .+ p6 = 1), is

F (t) =
∑6
i=1 pit

i

tµ
, where µ :=

6∑
i=1

ipi ,
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etc.

To get the first R factorial moments, for any specific, desired R, we simply find the first R + 1
terms in the Taylor expansion of F (t)n, at t = 1, that Maple can easily do symbolically, getting
explicit polynomial expressions, in n, for the r-th factorial moment, for each specific, numeric, r.
What it can’t do is find the general expression for symbolic r (as well as n, of course).

An even more efficient way to crank-out explicit polynomial expressions for the factorial moments,
is to, once and for all, crank out sufficiently many coefficients of F (1 + z) itself (equivalently find
sufficiently many factorial moments of the “atomic” experiment), let’s call them Fi, where, of
course, F0 = 1 and F1 = 0.

F (1 + z) = 1 +
∞∑
r=2

Fr
r!
zr ,

and then use the obvious fact that

F (1 + z)n+1 = F (1 + z)n · F (1 + z)

that entails:

1 +
∞∑
r=2

fr(n+ 1)
r!

zr =

(
1 +

∞∑
r=2

fr(n)
r!

zr

)(
1 +

∞∑
r=2

Fr
r!
zr

)
.

Rearranging, and comparing coefficient of zr, we have the following recurrence

fr(n+ 1)− fr(n) =
r∑
s=2

(
r

s

)
Fsfr−s(n) , (Recurrence)

Since obviously fr(0) = 0, this uniquely determines fr(n) as the indefinite sum of the right side,
and it immediately follows by induction that the even factorial moments f2r(n) are polynomials
of degree r, and the odd factorial moments f2r+1(n) are also polynomials of degree r. (Of course
f1(n) = 0).

Asymptotic Factorial Moments

There is no way that we can get an explicit, symbolic, expression, in both n and r for the general
factorial moments f2r(n), f2r+1(n). But, thanks to the miracle of computers, we can get explicit
expressions for their s-leading terms for any desired s.

Either “cheating” and using our knowledge that the normalized even factorial moments f2r(n)/f2(n)r

should tend to the even moments (2r)!/(2rr!) of the Standard Normal Distribution, and the nor-
malized odd factorial moments f2r+1(n)/f2(n)r+1/2 should tend to the odd moments (0) of the
Standard Normal Distribution, but better still, doing it ab initio, by staring at the leading terms
and making the obvious conjectures, we can write:

f2r(n) = f2(n)r
(2r)!
2rr!

[(
1 +

s∑
i=1

Ai(r)
ni

)
+O(

1
ns+1

)

]
,
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and, analogusly

f2r+1(n) = f2(n)r
(2r)!
2rr!

[(
s∑
i=0

Bi(r)
ni

)
+O(

1
ns+1

)

]
.

(Note that f2 = nF2).

Substituting this ansatz into (Recurrence), it emerges that the Ai(r)’s and Bi(r)’s are certain poly-
nomials in r. Rather than untangle the complicated implied recurrences for them, we empirically,
in turn, for i = 0, 1, 2, . . ., crank-out Ai(r), Bi(r) for sufficiently many numeric r and then “fit”
appropriate polynomials, using undetermined coefficients in the context of the polynomial ansatz
(see [Z2]). Once we have the conjectured explicit expressions, for the asymptotic expansion up to
our desired order (1/ns), we can, a posteriori, prove them rigorously by verifying (Recurrence) to
that desired order.

The Central Limit Theorem only asserts that the normalized r-th moments converge to the moments
of the Standard Normal Distributions, i.e. the case s = 0. So in particular, our computer reproved
the Central Limit Theorem, but with a vengeance, it gave us the first s terms in the asymptotics,
where s is as big as we wish (of course the higher the s, the longer that it would take).

What about the ordinary moments?

From

mr =
r∑

k=1

S(r, k)fr ,

we get:

mr(n) =
s∑

k=0

S(r, r − k)fr−k(n) +O(
1

ns+1
) .

Define
Sk(r) := S(r, r − k) .

It is easy to see that Sk(r) are polynomials in r of degree 2k. Indeed the defining recurrence
(StirlingRecurrence) transcribes to:

Sk(r)− Sk(r − 1) = (r − k)Sk−1(r − 1) ,

from which Maple can easily compute, recursively, as many of the Sk(r) as needed, starting at the
obvious initial condition S0(r) = 1, and taking the indefinite sum, with respect to r, of the already
known right hand side.

So to get the up-to-order-s asymptotics for the ordinary moment mr(n), Maple simply computes,
all by itself,

mr(n) =
s∑

k=0

Sk(r)fr−k(n) +O(
1

ns+1
) ,
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using the already computed expressions (in symbolic r and n) for f2r and f2r+1 obtained above (up
to the desired order s). Of course, we would have to treat the even moments, m2r, and the odd
moments m2r+1 separately, and they obviously have different expressions, but the computer does
not mind.

Repeating n times a Generic Probability Distribution

The above discussion applies equally to repeating a general probability distribution, given by its
ordinary moments M1 = 0, M2 = 1, M3,M4 . . .. One first finds the factorial moments (now using
the Stirling numbers of the first kind), and using the above formula, one can get the asymptotics of
the moments of the “repeated” n-times random variable, to any desired order s, of the 2r-th and
(2r + 1)-th moments for the normalized sum of n repetitions. For example, the first term is:

1 +
(−1 + r) r

(
2 rM3

2 + 3M4 − 9− 4M3
2
)

18n
+O(

1
n2

) .

More terms are available at the webpage of this article.

This leads us to the following interesting observation, that, once made, should be provable using
moment generating functions.

Refined Central Limit Theorem. Let {Xk} be a sequence of mutually independent random
variables with a common distribution. Suppose that µ := E[Xk] = 0 and σ2 := E[X2] = 1, and all
the first 2s moments, M1 = 0,M2 = 1,M3,M4, . . . ,M2s, are finite. Let Sn = X1 + . . . + Xn, and
let m2r(n) be the 2r-th moment of Sn. Then for even s,

m2r(n) = (2r)!/(2rr!)(1 +O(1/ns))

if the first 2s moments of X are the same as the first 2s moments of the Standard Normal Distri-
bution (namely: 0,1,0,3,0,15,0,105, ...) .

Limit Laws for Sequences of Discrete Probability Distributions

The Central Limit Theorem talks about the limit of a family of discrete probability distributions,
whose probability generating functions are given by the extremely simple

Pn(t) := F (t)n ,

that satisfy a first-order recurrence with constant, (in n) coefficients

Pn+1(t) = F (t)Pn(t) .

Many natural families of discrete probability distributions, especially those arising from generating
functions in combinatorial enumeration (“q-counting”), satisfy a more general kind of first-order
recurrence:

Pn+1(t) = F (n, t, tn)Pn(t) ,
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where F (n, t, tn) is a certain explicit rational function of n, t, tn.

For example (switching to the letter q to respect combinatorial tradition), consider the set of
permutations on n elements, under the “mahonian” statistics, whose counting generating function
is:

n∏
i=1

1− qi

1− q
.

The expectation is, of course, n(n − 1)/4, so dividing by n!qn(n−1)/4, we get that the probability
generating function for the random variable “number of inversions” is:

Pn(q) =
n∏
i=1

q−i/2 − qi/2

i(q−1/2 − q1/2)
.

So, in this case,

F (n, q, qn) =
q−(n+1)/2 − q(n+1)/2

(n+ 1)(q−1/2 − q1/2)
.

See [F](sec. X.6)[LP][M][S] for other approaches for proving Asymptotic Normality.

Another example is the q-Catalan distribution, whose asymptotic normality has been recently
proved by Chen, Wang, and Wang [CWW], who also proved more general results.

The discussion in the previous section goes almost verbatim to such more general families of discrete
probability distributions, except that now we can no longer (always) find the first factorial moments
directly. Now we must use the generalization of (Recurrence).

Instead of

F (1 + z) = 1 +
∞∑
r=2

Fr
r!
zr ,

we now have:

F (n, 1 + z, (1 + z)n) = 1 +
∞∑
r=2

Fr(n)
r!

zr ,

where now the Fr(n) are polynomials of n, and no longer have an interpretation as factorial moments
for an “atomic event”. They are just the Maclaurin coefficients of this more general object. The
analog of (Recurrence) reads:

fr(n+ 1)− fr(n) =
r∑
s=2

(
r

s

)
Fs(n)fr−s(n) . (GeneralRecurrence)

The same empirical approach as before still applies. We normalize, and guess explicit expressions for
the coefficients Ai(r), Bi(r) in the normalized factorial moments, that are then rigorously proved a
posteriori. Once explicit asymptotic expressions for the even and odd factorial moments have been
derived and proved, one uses the Stirling polynomials in order to deduce explicit expressions for
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the even and odd (usual) moments (about the mean), in particular proving asymptotic normality,
but with precise asymptotic expansion, to any desired order, of the general moments.

Accompanying Maple Packages

This article is accompanied by two Maple packages: CLT, and AsymptoticMoments. Most of the
procedures in CLT are subsumed by the more general procedures of AsymptoticMoments, but the
former has some extra features.

These packages can be downloaded from the webpage of this article:

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/georgy.html,

where there is ample sample input and output.

In particular, AsymptoticMoments is applied to the above-mentioned cases of the mahonian and
q-Catalan distribution, thereby sharpening them, by not only proving asymptotic normality, but
presenting a more detailed asymptotics for the moments. We also post numerous other examples, for
example, plane partitions whose 3D Ferrers diagrams are bounded in a box of any given, (numeric)
height.

Let us cite the simplest output. If you toss a fair coin n times, then the 2r-th moment is
(n/4)r(2r)!/(2rr!) times

1−1/3
(r − 1) r

n
+

1
90

r (r − 1) (r − 2) (5 r + 1)
n2

− 1
5670

(r − 1) (r − 2) (r − 3)
(
35 r2 + 21 r − 32

)
r

n3
+O(

1
n4

) .

Conclusion: Why is this interesting?

Locally, it is interesting for its own sake, but globally it is interesting since it presents a beautiful
example how probability theory would have been very different, had the computer been available
three hundred years ago. Using symbol-crunching the computer can derive deep theorems, and
largely obviates all the human attempts at a “rigorous” foundation of continuous probability, us-
ing measure theory and Kolmogorov’s “axiomatic” approach. The passage from the discrete to
the continuous becomes much more concrete and down-to-earth, and it is apparent that Discrete
Math rules, and Continuous Math is indeed a degenerate case. For other examples of probability
computerized-redux, see [Z3].

Future Work

This is just the tip of an iceberg. One should be able to consider much larger families of discrete
probability distributions, not just those given by first-order recurrences. Also joint distributions,
and multivariate limit laws should be amenable to the present approach. For example, proving
the joint asymptotic normality of the number of inversions and the major index on the set of
permutations on {1, 2, . . . , n}, using the more complicated recurrences derived in [Z4].
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