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Abstract. Recently, William Y.C. Chen, Qing-Hu Hou, and Doron Zeilberger developed an al-
gorithm for finding and proving congruence identities (modulo primes) of indefinite sums of many
combinatorial sequences, namely those (like the Catalan and Motzkin sequences) that are express-
ible in terms of constant terms of powers of Laurent polynomials. We first give a leisurely exposition
of their approach, and then extend it in two directions. The Laurent polynomials may be of several
variables, and instead of single sums we have multiple sums. In fact we even combine these two
generalizations. We conclude with some super-challenges.

Introduction

In the article [CHZ], the following type of quantities were considered

(
rp−1∑
k=0

a(k)

)
mod p ,

where

• a(k) is a combinatorial sequence, expressible as the constant term of a power of a Laurent
polynomial of a single variable (for example, the central binomial coefficient

(
2k
k

)
is the coefficient

of x0 in (x+ 1
x )2k) .

• r is a specific positive integer .

• p is an arbitrary prime .

Let x ≡p y mean x ≡ y (mod p), in other words, that x− y is divisible by p.

The [CHZ] method, while ingenious, is very elementary. The main “trick” is:

The Freshman’s Dream Identity ([Wi]): (a+ b)p ≡p a
p + bp .

Recall that the easy proof follows from the Binomial Theorem, and noting that
(

p
k

)
is divisible by

p except when k = 0 and k = p. This also leads to one of the many proofs of the grandmother
of all congruences, Fermat’s Little Theorem, ap ≡p a, by starting with 0p ≡p 0, and applying
induction to (a+ 1)p ≡p a

p + 1p.

The second ingredient in the [CHZ] method is even more elementary. It is:

Sum of a Geometric Series:
n−1∑
i=0

zi =
zn − 1
z − 1

.
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The focus in the Chen-Hou-Zeilberger ([CHZ]) paper was both computer-algebra implementation,
and proving a general theorem about a wide class of sums. Their paper is rather technical, hence
the first purpose of the present article is to give a leisurely introduction to their method, and
illustrate it with numerous simple examples. The second, main, purpose, however, is to extend the
method in two directions. The summand a(k), may be the constant term of a Laurent polynomial
of several variables, and instead of a single summation sign, we can have multi-sums. In fact we
can combine these two.

Notation

The constant term of a Laurent polynomial P (x1, x2, . . . , xn), alias the coefficient of x0
1x

0
2..x

0
n, is

denoted by CT [P (x1, x2, . . . , xn)]. The general coefficient of xm1
1 xm2

2 ..xmn
n in P (x1, x2, . . . , xn) is

denoted by [xm1
1 xm2

2 ..xmn
n ]P (x1, x2, . . . , xn). For example,

CT

[
1
xy

+ 3 + 5xy − x3 + 6y2

]
= 3 , [xy]

[
1
xy

+ 3 + 5xy + x3 + 6y2

]
= 5.

We use the symmetric representation of integers in (−p/2, p/2] when reducing modulo a prime p.
For example, 6 (mod 5) = 1 and 4 (mod 5) = −1.

Review of the Chen-Hou-Zeilberger Single Variable Case

In order to motivate our generalization, we will first review, in more detail than given in [CHZ],
some of their results. Let’s start with the Central Binomial Coefficients, sequence A000984 in
the great OEIS ([Sl], https://oeis.org/A000984).

Proposition 1. For any prime p ≥ 5, we have

p−1∑
n=0

(
2n
n

)
≡p

{
1, if p ≡ 1 (mod 3) ;
−1, if p ≡ 2 (mod 3) .

Proof: Using the fact that (
2n
n

)
= CT

[
(1 + x)2n

xn

]
,

and the Freshman’s Dream identity, (a+ b)p ≡p a
p + bp, we have

p−1∑
n=0

(
2n
n

)
=

p−1∑
n=0

CT

[(
(1 + x)2n

xn

)]
=

p−1∑
n=0

CT

[(
2 + x+

1
x

)n]

= CT

[(
2 + x+ 1

x

)p − 1
2 + x+ 1

x − 1

]
≡p CT

[
2p + xp + 1

xp − 1
1 + x+ 1

x

]
(By Freshman’s Dream)

≡p CT

[
2 + xp + 1

xp − 1
1 + x+ 1

x

]
(By Fermat’s Little theorem)
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= CT

[
1 + xp + 1

xp

1 + x+ 1
x

]
= CT

[
1 + xp + x2p

(1 + x+ x2)xp−1

]
= [xp−1]

[
1

1 + x+ x2

]

= [xp−1]
[

1− x

1− x3

]
= [xp]

( ∞∑
i=0

x3i+1

)
+ [xp]

( ∞∑
i=0

(−1) · x3i+2

)
.

The result follows from extracting the coefficient of xp in the above geometric series.

Proposition 1′.
2p−1∑
n=0

(
2n
n

)
≡p

{
3, if p ≡ 1 (mod 3) ;
−3, if p ≡ 2 (mod 3) .

Proof:
2p−1∑
n=0

(
2n
n

)
=

2p−1∑
n=0

CT

[(
2 + x+

1
x

)n]
= CT

[(
2 + x+ 1

x

)2p − 1
2 + x+ 1

x − 1

]

= CT

[(
6 + 4x+ 4

x + x2 + 1
x2

)p − 1
2 + x+ 1

x − 1

]
≡p CT

[(
6 + 4xp + 4

xp + x2p + 1
x2p

)
− 1

2 + x+ 1
x − 1

]
.

Obviously only the terms 4
xp and 1

x2p contribute to the constant term. Discarding all the other
ones, and simplifying, we get that this equals

[x2p−1]
[

1 + 4xp

1 + x+ x2

]
= [x2p−1]

[
1

1 + x+ x2

]
+ 4 · [xp−1]

[
1

1 + x+ x2

]

= [x2p−1]
[

1− x

1− x3

]
+ 4 · [xp−1]

[
1− x

1− x3

]
= [x2p−1]

[
1

1− x3

]
+ [x2p−1]

[
−x

1− x3

]
+ 4 · [xp−1]

[
1

1− x3

]
+ 4 · [xp−1]

[
−x

1− x3

]

= [x2p]

[ ∞∑
i=0

x3i+1

]
+ [x2p]

[ ∞∑
i=0

(−1) · x3i+2

]

+4 · [xp]

[ ∞∑
i=0

x3i+1

]
+ 4 · [xp]

[ ∞∑
i=0

(−1) · x3i+2

]
.

The result follows from extracting the coefficients of x2p in the first two geometric series above,
and the coefficient of xp in the last two.

The same method (of [CHZ]) can be used to find the ‘mod p’ of
∑rp−1

n=0

(
2n
n

)
for any positive integer

r. This leads to the following proposition, whose somewhat tedious proof we omit.

Proposition 1′′. For any prime p ≥ 5, and any positive integer, r,

rp−1∑
n=0

(
2n
n

)
≡p

{
αr, if p ≡ 1 (mod 3) ;
−αr, if p ≡ 2 (mod 3) ,
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where

αr =
r−1∑
n=0

(
2n
n

)
.

For the record, here are the first ten terms of the integer sequence αr:

[1, 3, 9, 29, 99, 351, 1275, 4707, 17577, 66187] .

The sequence αr is Sequence A6134 ([Sl],https://oeis.org/A006134). Note that αr is the number
of ways of tossing a coin < 2r times and getting as many Heads as Tails.

The most ubiquitous sequence in combinatorics is sequence A000108 in the OEIS
([Sl], https://oeis.org/A000108, that according to Neil Sloane is the longest entry), the super-
famous Catalan Numbers, Cn := (2n)!

n!(n+1)! , that count zillions of combinatorial families (see [St] for
some of the more interesting ones).

Proposition 2. Let Cn be the Catalan Numbers, then, for every prime p ≥ 5,

p−1∑
n=0

Cn ≡p

{
1, if p ≡ 1 (mod 3) ;
−2, if p ≡ 2 (mod 3) .

Proof: Since Cn =
(
2n
n

)
−
(

2n
n−1

)
, it is readily seen that Cn = CT [(1− x)(2 + x+ 1

x )n]. We have

p−1∑
n=0

Cn =
p−1∑
n=0

CT

[
(1− x)

(
2 + x+

1
x

)n]
= CT

[
(1− x)

((
2 + x+ 1

x

)p − 1
)

2 + x+ 1
x − 1

]
.

≡p CT

[
(1− x)

((
2 + xp + 1

xp

)
− 1
)

2 + x+ 1
x − 1

]
(By Freshman’s Dream) .

Since only the term 1
xp in the numerator contributes to the constant term, this equals

[xp−1]
[

1− x

1 + x+ x2

]
= [xp−1]

[
(1− x)2

1− x3

]

= [xp]
[

x

1− x3

]
+ [xp]

[
−2x2

1− x3

]
+ [xp]

[
x3

1− x3

]

= [xp]

[ ∞∑
i=0

1 · x3i+1

]
+ [xp]

[ ∞∑
i=0

(−2) · x3i+2

]
+ [xp]

[ ∞∑
i=0

1 · x3i+3

]
,

and the result follows from extracting the coefficient of xp from the first or second geometric series
above (note that we would never have to use the third geometric series, since p > 3).

The same method (of [CHZ]) can be used to find the ‘mod p’ of
∑rp−1

n=0 Cn for any specific positive
integer r. In fact, one can keep r general, but then the proof is rather tedious, and we will spare
the readers (and ourselves, from typing it).
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Proposition 2′. Let Cn be the Catalan Numbers, then, for any positive integer r, we have

rp−1∑
n=0

Cn ≡p

{
βr, if p ≡ 1 (mod 3) ;
−γr, if p ≡ 2 (mod 3) ,

where

βr =
r−1∑
n=0

Cn , γr =
r−1∑
n=0

(3n+ 2)Cn .

For the record, the first ten terms of the sequence of integer pairs [βr,−γr] are

[[1,−2], [2,−7], [4,−23], [9,−78], [23,−274], [65,−988], [197,−3628], [626,−13495], [2076,−50675], [6918,−191673]] .

We note that the sequence βr is sequence A014137 in the OEIS ([Sl], https://oeis.org/A014137)
but at this time of writing (June 9, 2016), the sequence γr is not there (yet).

Not as famous as the Catalan numbers, but not exactly obscure, are the Motzkin numbers, Mn,
sequence A001006 in the OEIS ([Sl], https://oeis.org/A001006), that may be defined by the
constant term formula

Mn = CT

[
(1− x2)

(
1 + x+

1
x

)n]
.

Proposition 3. Let Mn be the Motzkin numbers, then for any prime p ≥ 3, we have

p−1∑
n=0

Mn ≡p

{
2, if p ≡ 1 (mod 4) ;
−2, if p ≡ 3 (mod 4) .

Proof:

p−1∑
n=0

Mn =
p−1∑
n=0

CT

[
(1− x2)

(
1 + x+

1
x

)n]
= CT

[
(1− x2)

((
1 + x+ 1

x

)p − 1
)

1 + x+ 1
x − 1

]

≡p CT

[
(1− x2)

(
1 + xp + 1

xp − 1
)

1 + x+ 1
x − 1

]
= CT

[
(1− x2)

(
xp + 1

xp

)
x+ 1

x

]
= CT

[
x(1− x2)

(
xp + 1

xp

)
1 + x2

]

= [xp−1]
[

1− x2

1 + x2

]
= [xp]

[
x

1 + x2

]
− [xp]

[
x3

1 + x2

]
.

= [xp]

[ ∞∑
i=0

(−1)ix2i+1

]
+ [xp]

[ ∞∑
i=0

(−1)i+1x2i+3

]
,

and the result follows from extracting the coefficient of xp from the first and second geometric series
above, by noting that when p ≡ 1 (mod 4), i is even in the first series, and odd in the second
one, and vice-versa when p ≡ 3 (mod 4).
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The same method, applied to a general r yields

Proposition 3′. Let Mn be the Motzkin numbers, and let p ≥ 3 be prime, then

rp−1∑
n=0

Mn ≡p

{
2δr, if p ≡ 1 (mod 4) ;
−2δr, if p ≡ 3 (mod 4) ,

where δr is the sequence of partial sums of the central trinomial coefficients, sequence A097893 in
the OEIS([Sl], https://oeis.org/A097893) whose generating function is

∞∑
r=0

δrx
r =

1
(1− x)

√
(1 + x) (1− 3x)

.

Multi-Sums and Multi-Variables

We now extend the Chen-Hou-Zeilberger method for discovery and proof of congruence theorems
to multi-sums and multi-variables.

Proposition 4. Let p ≥ 5 be prime, then

p−1∑
n=0

p−1∑
m=0

(
n+m

m

)2

≡p

{
1, if p ≡ 1 (mod 3) ;
−1, if p ≡ 2 (mod 3) .

Proof: Let

P (x, y) = (1 + y)
(

1 +
1
x

)
,

and

Q(x, y) = (1 + x)
(

1 +
1
y

)
,

then (
n+m

m

)2

=
(
n+m

m

)(
n+m

n

)
= CT [P (x, y)nQ(x, y)m] .

We have

p−1∑
m=0

p−1∑
n=0

(
m+ n

m

)2

=
p−1∑
m=0

p−1∑
n=0

CT [P (x, y)nQ(x, y)m] =
p−1∑
m=0

CT

[
(P (x, y)p − 1)Q(x, y)m

P (x, y)− 1

]

= CT

[(
P (x, y)p − 1
P (x, y)− 1

)(
Q(x, y)p − 1
Q(x, y)− 1

)]
.

Using the Freshman’s Dream, (a+ b)p ≡p ap + bp, we can pass to mod p as above, and get

p−1∑
m=0

p−1∑
n=0

(
m+ n

m

)2

≡p CT

[(
P (xp, yp)− 1
P (x, y)− 1

)(
Q(xp, yp)− 1
Q(x, y)− 1

)]
≡p CT

[
(1 + yp + xpyp)(1 + xp + xpyp)

(1 + y + xy)(1 + x+ xy)xp−1yp−1

]
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≡p [xp−1yp−1]
[

(1 + yp + xpyp)(1 + xp + xpyp)
(1 + y + xy)(1 + x+ xy)

]
≡p [xp−1yp−1]

[
1

(1 + y + xy)(1 + x+ xy)

]
.

It is possible to show that the coefficient of xnyn in the Maclaurin expansion of the rational
function 1

(1+y+xy)(1+x+xy) is 1 when n ≡ 0 (mod 3), −1 when n ≡ 1 (mod 3), and 0 when
n ≡ 2 (mod 3). One way is to do a partial-fraction decomposition, and extract the coefficient of
xn, getting a certain expression in y and n, and then extract the coefficient of yn. Another way
is by using the Apagodu-Zeilberger algorithm ([AZ]), that outputs that the sequence of diagonal
coefficients, let’s call them a(n), satisfy the recurrence equation a(n + 2) + a(n + 1) + a(n) = 0,
with initial conditions a(0) = 1, a(1) = −1.

A bit of more work, that we omit, leads to

Proposition 4′. For any prime p ≥ 5, and any pair of positive integers, r, s, we have

rp−1∑
n=0

sp−1∑
m=0

(
n+m

m

)2

≡p

{
εrs, if p ≡ 1 (mod 3) ;
−εrs, if p ≡ 2 (mod 3) ,

where

εrs =
r−1∑
m=0

s−1∑
n=0

(
n+m

m

)2

.

We finally consider partial sums of trinomial coefficients.

Proposition 5. Let p > 2 be prime, then we have

p−1∑
m1=0

p−1∑
m2=0

p−1∑
m3=0

(
m1 +m2 +m3

m1,m2,m3

)
≡p 1 .

Proof: First observe that
(
m1+m2+m3
m1,m2,m3

)
= CT

[
(x+y+z)m1+m2+m3

xm1ym2zm3

]
.

Hence ∑
0≤m1,m2,m3≤p−1

(
m1 +m2 +m3

m1,m2,m3

)
=

∑
0≤m1,m2,m3≤p−1

CT
[
(x+ y + z)m1+m2+m3/(xm1ym2zm3)

]

= CT

 ∑
0≤m1,m2,m3≤p−1

(x+ y + z)m1+m2+m3

xm1ym2zm3


= CT

[(
p−1∑

m1=0

(
x+ y + z

x

)m1
)(

p−1∑
m2=0

(
x+ y + z

x

)m2
)(

p−1∑
m3=0

(
x+ y + z

x

)m3
)]

= CT

[
(x+y+z

x )p − 1
x+y+z

x − 1
·

(x+y+z
y )p − 1

x+y+z
y − 1

·
(x+y+z

z )p − 1
x+y+z

z − 1

]
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= [xp−1yp−1zp−1]
[

(x+ y + z)p − xp

y + z
· (x+ y + z)p − yp

x+ z
· (x+ y + z)p − zp

x+ y

]
.

So far this is true for all p, not only p prime. Now take it mod p and get, using the Freshman’s
Dream in the form (x+ y + z)p ≡p x

p + yp + zp, that

p−1∑
m1=0

p−1∑
m2=0

p−1∑
m3=0

(
m1 +m2 +m3

m1,m2,m3

)
≡p [xp−1yp−1zp−1]

(
yp + zp

y + z
· x

p + zp

x+ z
· x

p + yp

x+ y

)

= [xp−1yp−1zp−1]

(
p−1∑
i=0

(−1)iyizp−1−i

)p−1∑
j=0

(−1)jzjxp−1−j

(p−1∑
k=0

(−1)kxkyp−1−k

)

= [xp−1yp−1zp−1]

 ∑
0≤i,j,k<p

(−1)i+j+kxp−1−j+kyi+p−1−kzp−1−i+j

 .

The only contributions to the coefficient of xp−1yp−1zp−1 in the above triple sum come when
i = j = k, so the desired coefficient of xp−1yp−1zp−1 is

p−1∑
i=0

(−1)3i =
p−1∑
i=0

(−1)i = (1− 1 + 1− 1 + . . .+ 1− 1) + 1 = 1 .

With more effort, one can get the following generalization.

Proposition 5′. Let p ≥ 3 be prime, and let r, s, t be any positive integers, then

rp−1∑
m1=0

sp−1∑
m2=0

tp−1∑
m3=0

(
m1 +m2 +m3

m1,m2,m3

)
≡p κrst ,

where

κrst =
r−1∑

m1=0

s−1∑
m2=0

t−1∑
m3=0

(
m1 +m2 +m3

m1,m2,m3

)
.

The same method of proof used in Proposition 5 yields (with a little more effort) a multinomial
generalization.

Proposition 6. Let p ≥ 3 be prime, then

p−1∑
m1=0

. . .

p−1∑
mn=0

(
m1 + . . .mn

m1, . . . ,mn

)
≡p 1 .

In fact, the following also holds.
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Proposition 6′. Let p ≥ 3 be prime, and let r1, . . . , rn be positive integers, then

r1p−1∑
m1=0

. . .

rnp−1∑
mn=0

(
m1 + . . .mn

m1, . . . ,mn

)
≡p κr1...rn

,

where

κr1...rn
=

r1−1∑
m1=0

. . .

rn−1∑
mn=0

(
m1 + . . .mn

m1, . . . ,mn

)
.

Super Congruences

If a congruence identity that is valid modulo a prime p, is also valid modulo p2 (or better still,
modulo p3 and beyond) then we have a super-congruence. The grandmother of all supercongruences
is Wolstenholme’s Theorem([Wo], see also [We]) that asserts that(

2p− 1
p− 1

)
≡p3 1 ,

that improves on the weaker version
(
2p−1
p−1

)
≡p2 1, first proved by Charles Babbage ([B]), better

known for more impressive innovations.

To our surprise, most (but not all!) of the above congruences have super-congruence extensions.
The method of [CHZ], as it stands now, is not applicable, since the “Freshman’s Dream” is only
valid modulo p, hence we have no clue how to prove them. We leave them as challenges to our
readers.

Super-Conjecture 1. For any prime p ≥ 5

p−1∑
n=0

(
2n
n

)
≡p2

{
1, if p ≡ 1 (mod 3) ;
−1, if p ≡ 2 (mod 3) .

More generally

Super-Conjecture 1′′. For any prime p ≥ 5, and any positive integer, r,

rp−1∑
n=0

(
2n
n

)
≡p2

{
αr, if p ≡ 1 (mod 3) ;
−αr, if p ≡ 2 (mod 3) ,

where

αr =
r−1∑
n=0

(
2n
n

)
.

Super-Conjecture 2. Let Cn be the Catalan Numbers, then, for every prime p ≥ 5,

p−1∑
n=0

Cn ≡p2

{
1, if p ≡ 1 (mod 3) ;
−2, if p ≡ 2 (mod 3) . .
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More generally,

Super-Conjecture 2′. Let Cn be the Catalan Numbers, then, for any positive integer r, we have

rp−1∑
n=0

Cn ≡p2

{
βr, if p ≡ 1 (mod 3) ;
−γr, if p ≡ 2 (mod 3) ,

where

βr =
r−1∑
n=0

Cn , γr =
r−1∑
n=0

(3n+ 2)Cn .

[Added in Revised version: conjectures 1” and 2’ have now been proved, see [L]]

We note that poor Motzkin does not seem to have a super-extension, but Proposition 4 sure does.

Super-Conjecture 4. Let p ≥ 5 be prime, then

p−1∑
n=0

p−1∑
m=0

(
n+m

m

)2

≡p2

{
1, if p ≡ 1 (mod 3) ;
−1, if p ≡ 2 ( (mod 3) .

More generally

Super-Conjecture 4′. For any prime p ≥ 5, and any pair of positive integers, r, s, we have

rp−1∑
n=0

sp−1∑
m=0

(
n+m

m

)2

≡p2

{
εrs, if p ≡ 1 (mod 3) ;
−εrs, if p ≡ 2 (mod 3) ,

where

εrs =
r−1∑
m=0

s−1∑
n=0

(
n+m

m

)2

.

The most pleasant surprise is that Propositions 5 and 5′ can be “upgraded” to a cubic super-
congruence, i.e. it is still true modulo p3.

Super-Conjecture 5. Let p > 2 be prime, then we have

p−1∑
m1=0

p−1∑
m2=0

p−1∑
m3=0

(
m1 +m2 +m3

m1,m2,m3

)
≡p3 1 .

More generally

Super-Conjecture 5′. Let p ≥ 3 be prime, and let r, s, t be any positive integers, then

rp−1∑
m1=0

sp−1∑
m2=0

tp−1∑
m3=0

(
m1 +m2 +m3

m1,m2,m3

)
≡p3 κrst ,
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where

κrst =
r−1∑

m1=0

s−1∑
m2=0

t−1∑
m3=0

(
m1 +m2 +m3

m1,m2,m3

)
.

[Added in Revised version: conjectures 4’ and 5’ have now been proved, see [AT]]

To our bitter disappointment, Propositions 6 and 6′, for n ≥ 4 summation signs, do not have
super-upgrades.

Lots and Lots of Combinatorial Challenges

Perhaps the nicest proof of Fermat’s Little Theorem, ap ≡p a, is Golomb’s ([G]) combinatorial
proof, that notes that ap is the number of (straight) necklaces with p beads, using beads of a
different colors, and hence ap − a is the number of such (straight) necklaces that are not all of the
same color. For any such necklace, all its p circular rotations are distinct (since p is prime), hence
the set of such necklaces can be divided into families, each of them with p members, and hence
there are (ap − a)/p ‘circular’ necklaces (without clasp), and this must be an integer.

Each and every quantity in the above propositions and conjectures counts a natural combinatorial
family. For example

∑p−1
n=0

(
2n
n

)
counts the number of binary sequences with the same number of

0’s and 1’s whose length is less than 2p. Can you find a member of this set that when you remove
it, and p ≡ 1 (mod 3), you can partition that set into families each of them with exactly p (or
better still, for the super-congruence, p2) members?, and when p ≡ 2 (mod 3)), can you find two
such members?
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