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As always in q-theory, (X;Q)n will stand for the product (1 − X)(1 − QX)...(1 − Qn−1X), and
when the ”base” Q is q, we will abbreviate (X; q)n to (X)n. For any Laurent polynomial f in
x1, ..., xn, CT (f) denotes the coefficient of x0

1..x
0
n. Throughout this paper t := qa , s=qb , u = qc.

Theorem( q-extension of (4.2) in [F2]):
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Proof: As in [Z], first use the Stembridge-Stanton trick, to transform (*) to the equivalent ”anti-
symmetric” version, let’s call it (*’), in which ( qxjxi )

a
is replaced by ( qxjxi )

a−1
, and the right side of

(*) gets multiplied by (1− t)/(t; t)a. Next expand the very first product on the left of (*’), into a
sum of 2n terms, and note that they are all bad guys (see [Z], p. 314 ), except for the n+ 1 terms
x1...xry

r, r = 0, ..., n, the corresponding constant terms of which are evaluated by [Z]’s eq. (5.1).
QED

Historical Notes: The special case q = 1, b = 1,c = 0, of the above theorem was conjectured
in [F1]. Shaun Cooper[C] formulated a conjecture for the general q-case, with still b = 1, c = 0.
After Peter Forrester received a preliminary version of the present paper, that proved Cooper’s
conjectured q-extension of his original conjecture, he also received the preprint [K1], from which[F2]
he was able to derive the special case q = 1 of the above theorem. Forrester told us that the general
theorem should follow from [K2] in an analogous way.

The present proof is shorter (even with [Z]) than Kaneko’s proof, and entirely elementary, but
Kaneko proves an even more general theorem.

Acknowledgement: Many thanks are due to Shaun Cooper and Peter Forrester for helpful re-
marks.
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