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As always in g-theory, (X; @), will stand for the product (1-X)(1-0QX)...1 —Q"'X), and
when the ”"base” @ is q, we will abbreviate (X;q)n to (X)p. For any Laurent polynomial f in
T1, ..y T, CT(f) denotes the coefficient of x9..20 Throughout this paper t := ¢ *=¢", u = ¢

Theorem( g-extension of (4.2) in [F2]):
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Proof: As in [Z], first use the Stembridge-Stanton trick, to transform (*) to the equivalent ”anti-
symmetric” version, let’s call it (*"), in which (%) is replaced by (47*) _ , and the right side of

(*) gets multiplied by (1 —t)/(¢;t)s. Next expand the very first product on the left of (*’), into a
sum of 2" terms, and note that they are all bad guys (see [Z], p. 314 ), except for the n + 1 terms

x1..xpy”, r = 0,...,n, the corresponding constant terms of which are evaluated by [Z]’s eq. (5.1).
QED

Historical Notes: The special case ¢ = 1, b = 1,¢c = 0, of the above theorem was conjectured
n [F1]. Shaun Cooper[C] formulated a conjecture for the general g-case, with still b = 1, ¢ = 0.
After Peter Forrester received a preliminary version of the present paper, that proved Cooper’s
conjectured g-extension of his original conjecture, he also received the preprint [K1], from which[F2]
he was able to derive the special case ¢ = 1 of the above theorem. Forrester told us that the general
theorem should follow from [K2] in an analogous way.

The present proof is shorter (even with [Z]) than Kaneko’s proof, and entirely elementary, but
Kaneko proves an even more general theorem.

Acknowledgement: Many thanks are due to Shaun Cooper and Peter Forrester for helpful re-
marks.
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