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Abstract: We recall the notion of fractional enumeration and immediately focus on the fractional

counting of integer partitions, where each partition gets ‘credit’ equal to the reciprocal of the

product of its parts. We raise two intriguing questions regarding this count, and for each such

question we are pledging a $100 donation to the OEIS, in honor of the first solver. [Update Oct.

31, 2018: Will Sawin has solved the first question. A donation to the OEIS in his honor, has been

made. His proof is given as an appendix to this revised version.]

Preface: There are many ways to enumerate

Naive counting of combinatorial sets counts by 1. Generatingfunctionology counts by zstat, where z

is an indeterminate (i.e. symbolic), and stat is a certain statistic of interest. Statistical mechanics

also ‘counts’ by zstat, but now z is a continuous real (or complex) variable of physical significance.

Sieve theory ‘counts’ by ±1.

The general scenario of naive enumeration is a sequence of combinatorial sets, An, naturally indexed

by a non-negative integer n, and one wants a formula, or at least an efficient algorithm, to compute

the number of elements of An, denoted by |An|.

For example,

• The sequence ‘set of subsets of {1, . . . , n}’, where |An| = 2n.

It is: https://oeis.org/A000079 .

• The sequence ‘set of permutations of {1, . . . , n}’, where |An| = n!.

It is: https://oeis.org/A000142 .

• The sequence of integer partitions of n, where |An| = p(n).

It is: https://oeis.org/A000041 .

There are no ‘nice’ formulas for p(n), but there exist efficient algorithms. One not so efficient

‘formula’ is

‘the coefficient of qn in 1/((1− q)(1− q2) · · · (1− qn))’ .

The general scenario of Generatingfunctionology enumeration is a sequence of combinatorial sets,

An, naturally indexed by a non-negative integer n, and a certain ‘statistic’ defined on its objects

s → stat(s), and one wants a formula, or at least an efficient algorithm, to compute the sequence

of weight-enumerators, |An|z :=
∑
s∈An

zstat(s).

For example,

• The sequence ‘set of subsets of {1, . . . , n}’, where the statistic is ‘cardinality’, and we have
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|An|z = (1 + z)n.

• The sequence ‘set of permutations of {1, . . . , n}’, where the statistic is ‘number of inversions’,

and we have |An|z = 1 · (1 + z) · (1 + z + z2) · · · (1 + z + . . .+ zn−1) .

• The sequence of integer partitions of n, where the statistic is ‘largest part’, for which, once again,

there is no ‘nice’ formula, but there exist efficient algorithms. One, not so efficient ‘formula’ is the

coefficient of qn in 1/((1− qz)(1− q2z) · · · (1− qnz))

Signed Counting

Let µ(n) be 1 if n is a product of an even number of distinct primes, −1 if it is a product of an odd

number of distinct primes, and 0 otherwise. The signed enumeration of the set A(n) := {1, . . . , n},
whose naive count is n, is

M(n) :=

n∑
i=1

µ(i) .

Exercise: Find a closed form formula for M(n) that would entail its asymptotic behavior. If

you can’t, prove at least that it is O(n
1
2+ε) for any ε > 0. Failing this, prove at least that it is

O(n0.99999999999999999999).

Functional Counting

The function f(x) := zx, that gives the generatingfunctionology count could be replaced by any

function. So let’s define

af (n) :=
∑
s∈An

f(stat(s)) .

If f is a power f(x) := xk, one gets the numerator of the k-th moment of stat.

Fractional Counting

This corresponds to the case f(x) := 1
x . Fractional counting of lattice paths is dealt with in

[FGZ]. Another natural form of fractional counting was described by Baez and Dolan [BD], called

‘homotopy cardinality’ (or ‘groupoid cardinality’). The homotopy cardinality

|X| =
∑

[x]∈X/∼

1

|Aut(x)|

of a groupoid X counts the number of isomorphism classes of objects in X, but where each class is

weighted inversely by the size of the automorphism group of any representative element.

Maple package

This article is accompanied by a Maple package, FCP.txt, obtainable from the front of this article:

http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/fcp.html .
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That page also contains sample input and output files, as well as a nice picture.

Fractional Counting of Partitions

From now we will focus on fractional counting of integer partitions where each partition gets ‘credit’

the reciprocal of the product of its parts.

Definition: Let b(n) be defined by

b(n) :=
∑

p1+...+pk=n

p1≥p2≥...≥pk>0

1

p1p2 . . . pk
.

Let’s spell out the first few terms of the sequence of fractions b(n)

b(1) =
1

1
= 1 ,

b(2) =
1

1 · 1
+

1

2
=

3

2
,

b(3) =
1

1 · 1 · 1
+

1

2 · 1
+

1

3
=

11

6
.

For the first 100 terms see

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oFCP1.txt .

How to compute b(n) for many n?

Let’s recall one of the many ways to compute a table of p(n), the naive count of the set of partitions

of n, for many values of n. It is not the most efficient way, but the one easiest to adapt to the

computation of the fractional count, that we called b(n).

Let p(n, k) be the number of partitions of n whose largest part is k. Once we know p(n, k) for

1 ≤ k ≤ n ≤ N we would, of course, know p(n) for 1 ≤ n ≤ N , since

p(n) =

n∑
k=1

p(n, k) .

p(n, k) may be computed, recursively, via the dynamical programming recurrence

p(n, k) =

k∑
k′=1

p(n− k, k′) ,

since removing the largest part, k, of a partition of n results in a partition of n− k whose largest

part is ≤ k.
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A more compact recursion, without the
∑

, is obtained as follows. Replace, in the above equation,

n and k by n− 1 and k − 1 respectively, to get

p(n− 1, k − 1) =
k−1∑
k′=1

p(n− k, k′) .

Subtracting gives

p(n, k) − p(n− 1, k − 1) = p(n− k, k) ,

leading to the recurrence

p(n, k) = p(n− 1, k − 1) + p(n− k, k) .

We now proceed analogously.

Let b(n, k) be the fractional count of the set of partitions of n whose largest part is k. Once we

know b(n, k) for 1 ≤ k ≤ n ≤ N we would, of course, know b(n) for 1 ≤ n ≤ N , since

b(n) =

n∑
k=1

b(n, k) .

b(n, k) may be computed via the dynamical programming recurrence

b(n, k) =
1

k

k∑
k′=1

b(n− k, k′) ,

since removing the largest part, k, of a partition of n results in a partition of n− k whose largest

part is ≤ k.

Multiplying both sides by k yields

k b(n, k) =

k∑
k′=1

b(n− k, k′) .

Replacing n and k by n− 1 and k − 1 respectively, yields

(k − 1) b(n− 1, k − 1) =

k−1∑
k′=1

b(n− k, k′) .

Subtracting gives

k b(n, k) − (k − 1) b(n− 1, k − 1) = b(n− k, k) ,

leading to the recurrence

b(n, k) =
k − 1

k
b(n− 1, k − 1) +

1

k
b(n− k, k) ,
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with the boundary conditions b(n, 1) = 1 and b(n, k) = 0 if k > n.

Procedure bnk(n,k) implements this recurrence in the Maple package FCP.txt, and bnkF(n,k) is

the much faster floating-point version.

We believe that the following fact is easy to prove.

Fact: C := limn→∞
b(n)
n exists.

The convergence is rather slow. Here are the values of b(n)
n for 15000− 10 ≤ n ≤ 15000.

0.5611411658 , 0.5611411846 , 0.5611412033 , 0.5611412220 , 0.5611412407 , 0.5611412594,

0.5611412781 , 0.5611412968 , 0.5611413156 , 0.5611413344 , 0.5611413530 .

One of us (DZ) is pledging a $100 donation to the OEIS in honor of the first person to answer the

following question.

Question 1: Identify C in terms of known mathematical constants. In particular, is C = e−γ?

Here γ is Euler’s constant. Note that e−γ = 0.5614594835668851698 . . . .

Added Oct. 31, 2018: We are almost sure that C is indeed e−γ . If you use the ‘ansatz’

b(n)

n
= c0 +

c1
n

,

and plug-in n = 14999 and n = 15000, you would get two equations in the two unknowns c0 and

c1, whose solution is

{c0 = 0.5614203344, c1 = −4.184721000} ,

agreeing to four decimal places.

[Update Oct. 31, 2018: Will Sawin has solved Question 1. A donation to the OEIS, in his honor,

has been made. His proof is given as an appendix to this article.]

We also noticed, numerically, that for each real 0 < x < 1

f(x) := limn→∞ b(n, bnxc) ,

exists, and defines a nice, decreasing function. To see an approximation, using n = 2000, see

http://sites.math.rutgers.edu/~zeilberg/tokhniot/picsFCP/fcp1.html .

We are also pledging a $100 donation to the OEIS in honor of the first person to answer the

following question.

Question 2: Find a differential equation satisfied by f(x), and if possible, an explicit expression

in terms of known functions.
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Note that

C =

∫ 1

0

f(x) dx ,

so an answer to Question 2 may settle Question 1.

A natural approach

The asymptotic expression for the naive counting of partitions, the famous partition function p(n),

https://oeis.org/A000041, is the subject of the celebrated Hardy-Ramanujan-Rademacher formula

(See [A], Ch. 6). The proof uses the Circle method, that uses the Euler generating function

∞∑
n=0

p(n) qn =
1

(1− q)(1− q2)(1− q3) · · ·
.

This enables one to express p(n) as a contour integral.

The analogous generating function for our sequence of interest is obviously

∞∑
n=0

b(n) qn =
1

(1− q)(1− q2

2 )(1− q3

3 ) · · ·
.

It is possible that a similar proof (possibly easier, since we do not want the full asymptotics only

the leading term) would solve Question 1.

Regarding b(n, k), we obviously have

∞∑
n=0

b(n, k) qn =
qk/k

(1 − q) (1 − q2

2 ) (1 − q3

3 ) · · · (1 − qk

k )
.

Once again this implies a certain contour integral expression for b(n, k) that may lead to an answer

to Question 2.

A much easier question

If you look at partitions in frequency notation 1a1 . . . nan and give each of them ‘credit’

1

(1a1a1!) · · · (nanan!)
,

and define c(n) as the sum of these over all partitions of n, then we have

∞∑
n=0

c(n)qn = eq/1 eq
2/2 eq

3/3 · · · = exp

( ∞∑
i=1

qi

i

)
= exp(−log(1− q)) =

1

1− q
,

and it follows that c(n) = 1 for all n.

Recall that n!
(1a1a1!)···(nanan!)

is famously the number of permutations of n whose cycle structure is

1a1 . . . nan , i.e. the number of permutations of n whose expression into a product of disjoint cycles
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has a1 fixed points, a2 cycles of length 2 etc. Recall the easy proof of that fact. If you order each

of the cycle-lengths, then the number of ways of distributing n ‘balls’ into the a1 + . . .+ an ‘boxes’

is the multinomial coefficient n!
1!a12!a2 ···n!an . Since the order of cycles of the same length does not

matter, we have to divide by a1! · · · an!, getting n!
(a1!1!a1 )(a2!2!a2 )···(an!n!an ) . But each box with, say,

r ‘balls’, can be arranged into (r − 1)! cycles hence the desired number has to be multiplied by

1!a22!a3 · · · (n−1)!an proving this fact, that goes back, at least, to Cauchy and Cayley. Since the total

number of permutations of length n is n!, adding up, and dividing by n! gives a ‘combinatorial proof’

that c(n) = 1 for every n. These coefficients also famously feature in the cycle index polynomial of

the symmetric group in Polya-Redfield theory. A much less famous occurrence, kindly pointed to us

by Andrew Sills, is due to Major Percy A. MacMahon ([M], p. 61ff), where these are the coefficients

in a certain ‘partial fraction decomposition’, that has been beautifully extended by Sills([Si]) into

a multivariate identity.

Incidentally, the expression for c(n) is precisely the homotopy cardinality |X| = 1 of the ‘action

groupoid’ X = Sn // Sn whose objects are permutations of n and whose isomorphisms are gen-

erated by the conjugation action of Sn on itself. Isomorphism classes of objects in Sn // Sn are

represented by partitions (since two permutations are conjugate just in case they have the same

cycle lengths), and the formula (1a1a1!) · · · (nanan!) gives the order of the automorphism group (∼=
stabilizer subgroup for the conjugation action) of any permutation with cycle structure 1a1 . . . nan .

Another easy question

If you look at partitions in frequency notation 1a1 . . . nan and now give each of them ‘credit’

1

(1!a1a1!) · · · (n!anan!)
,

and define d(n) as the sum of these over all partitions of n, then we have

∞∑
n=0

d(n)qn = eq/1! eq
2/2! eq

3/3! · · · = exp

( ∞∑
i=1

qi

i!

)
= exp(exp(q)− 1)) =

∞∑
n=0

Bn
n!
qn ,

where Bn are the Bell numbers, https://oeis.org/A000110. So d(n) = Bn

n! . In particular,

∞∑
n=0

d(n) = ee−1 = 5.5749415247608806 . . .

is the homotopy cardinality of the groupoid whose objects are finite sets equipped with a partition

and whose isomorphisms are partition-respecting bijections.

The beautiful work of Robert Schneider

While we believe that Questions 1 and 2 are new, it turns out that our kind of ‘fractional counting’

of partitions showed up recently in a remarkable PhD thesis, written by Robert Schneider ([Sc1], see

also [Sc2]), where the sum of the reciprocals of squares (and more general powers) of the ‘product
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of the parts’, (that he calls the norm), taken over all partitions into even parts (and more generally

multiples of m, for any m ≥ 2) are very elegantly expressed in terms of values of the Riemann Zeta

function at integer arguments. We thank Andrew Sills for bringing this to our attention.

Epilogue: We need yet another On-Line Encyclopedia

In addition to the great OEIS ([Sl]) that lets you identify integer sequences, and the very useful

“Inverse Symbolic Calculator” ([BP]) that lets you identify constants, it would be useful to have a

searchable database of continuous functions defined (for starters) on 0 < x < 1, given numerically

with, say, a resolution of 0.01, so each function will have 100 values in floating point. If such a

data-base existed, Question 2 may have been answered (but one would need to go pretty far to get

good approximations for f(x)).

Note Added Oct. 31, 2018: A few hours after the posting of this article in the arxiv, Will

Sawin, Columbia University, solved Question 1. A donation to the OEIS, in his honor, has been

made. Here is his email message, reproduced with his kind permission.

Appendix: Solution to Question 1

William SAWIN

I present a solution to question 1 of your recent arXiv preprint. Indeed, the constant is e−γ . You

ask about the series

∞∑
n=0

b(n)qn =

∞∏
n=1

1

1− qn

n

.

Let us choose c(n) so that we have

∞∑
n=0

c(n)qn = (1− q)2
∞∏
n=1

1

1− qn

n

.

Using the formal identity

1

1− q
=

∞∏
n=1

e
qn

n ,

we have

(1− q)2
∞∏
n=1

1

1− qn

n

= (1− q)
∞∏
n=2

1

1− qn

n

= e−q
∞∏
n=2

e−
qn

n

1− qn

n

.

Now using the corollary

1

1− qn

n

=
∞∏
d=1

e(
qn

n )d/d ,
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of the same formal identity, we see that the terms in the infinite product have nonnegative coeffi-

cients.

Hence to show that
∑∞
n=0 |c(n)| is bounded, it suffices to show that the product of the sums of the

coefficients of the terms in the infinite product are bounded, which is the same as showing that the

infinite product is bounded with q substituted for 1.

If so, then
∑∞
n=0 c(n) is well-defined, and is equal to the product with q substituted for 1.

This is

e−1
∞∏
n=2

e−1/n

1− 1/n
= lim
m→∞

[
exp(

m∑
n=1

− 1

n
)
m∏
n=2

1

1− 1
n

]
= lim
m→∞

[(
exp(

m∑
n=1

− 1

n
)

)
·m

]

= lim
m→∞

exp(logm−
m∑
n=1

1

n
) = e−γ .

So we know that
∑∞
n=1 c(n) converges absolutely to e−γ . Hence the coefficients of

1

1− q

∞∑
n=1

c(n)qn ,

which are the partial sums of this series converge, as n goes to infinity, to e−γ .

Hence the coefficients of
∑∞
n=1 b(n), which are the partial sums of that series, are asymptotic to

n e−γ .
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