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1. Preamble

For a partition λ = (λ1, λ2, . . . , λl), let us define wλ = λ1λ2 · · ·λl. The main quantity of interest is

b(n) =
∑
λ`n

1

wλ
.

We consider the generating function of this sequence:

f(z) =
∑
n≥0

b(n)zn =
∏
i≥1

(1− zi/i)−1.

Lemma 1.1. The coefficients of

(1− z)f(z) =
∑
n≥0

(b(n)− b(n− 1))zn =
∏
i≥2

(1− zi/i)−1.

are nonnegative.

Proof. If µ ∪ {1} denotes the partition obtained from µ by adding a single part, we have that wµ∪{1} = wµ,
so

b(n) =
∑
λ`n

1

wλ
≥
∑
µ`n−1

1

wµ∪{1}
= b(n− 1).

�

2. Asymptotics

Theorem 2.1. We have b(n) = e−γn(1 + o(1)) as n→∞.

Proof. Let us write, for |z| < 1:

log(f(z)) = − log(1− z)−
∑
i≥2

log(1− zi/i)

= −2 log(1− z)− z −
∑
i≥2

(log(1− zi/i) + zi/i).

By considering Taylor series, we have the estimate that

| log(1− w) + w| < |w|2

whenever |w| is sufficiently small. If we define

g(z) = −z −
∑
i≥2

(log(1− zi/i) + zi/i),

then for |z| ≤ 1, all sufficiently large terms in the sum are bounded by 1/i2, in particular, g(z) extends to a
continuous function on the closed unit disc, and we have

log(f(z)) = −2 log(1− z) + g(z)

which gives

(1− z)f(z) =
eg(z)

1− z
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We may now apply the Hardy-Littlewood Tauberian theorem. This theorem asserts that if an ≥ 0 is a
sequence of real numbers such that ∑

n≥0

anx
n ∼ 1

1− x

as x→ 1 from below, then ∑
k≤n

ak ∼ n.

In our setting, Lemma 1 guarantees that we may apply the theorem after we multiply through by eg(1). We
calculate

g(1) = −1−
∑
i≥2

(log(1− 1/i) + 1/i) = −γ

This proves the theorem. �

3. Understanding b(n, k)

In this section x will be a number between zero and one.

Definition 3.1. Let

c(n, k) = eγb(n, bkc)
and

c(n) = eγb(n).

Using this new function will make the following calculations cleaner, although it only negligibly differs from
the function of interest. For example, limn→∞ c(n)/n = 1 according to our new convention. Note that c(n, k)
satisfies the same recurrence identities as b(n, bkc).

Suppose that 1 ≥ x ≥ 1/2. Then we have

c(n, xn) =
1

xn

xn∑
i=1

c((1− x)n, i) =
c((1− x)n)

xn
,

because xn ≥ (1−x)n. By the result of the previous section, we may take the limit as n→∞, and obtain 1−x
x .

Let us repeat this for 1/2 ≥ x ≥ 1/3. We get

c(n, xn) =
1

xn

xn∑
i=1

c((1− x)n, i) =
1

xn

c((1− x)n)−
(1−x)n∑
i=xn+1

c((1− x)n, i)

 .

The key observation is that for i between xn + 1 and (1 − x)n, 2i ≥ (1 − x)n, so that c((1 − x)n, i) =
c((1− x)n− i)/i (similarly to the 1 ≥ x ≥ 1/2 case). We may now take the limit as n→∞ (and recognise
one of the terms as Riemann sum):

1− x
x
− 1

x
lim
n→∞

(1−x)n∑
i=xn+1

(1− x)n− i+ o(n)

ni
=

1− x
x
− 1

x
lim
n→∞

1

n

o(n) +

(1−x)n∑
i=xn+1

(1− x)− i
n

i
n


=

1− x
x
− 1

x

∫ 1−x

x

(1− x)− t
t

dt

=
2− 3x

x
− (1− x)

x
log

(
1− x
x

)

Here we used the fact that i = Θ(n), so that
∑(1−x)n
i=xn+1 o(n)/i = o(n). We notice immediately that our limit

function is not smooth at x = 1/2.
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Proposition 3.2. For i ∈ Z>0, there exists a smooth function Fr(t) such that for x ∈ [ 1
r+1 ,

1
r ],

c(n, xn) = Fr(x) + o(1)

as n→∞.

Proof. We have already illustrated this in for 1 ≥ x ≥ 1/2, where we obtained F1(x) = 1−x
x ; this forms the

base case of an induction on r. We now perform the same manipulation as for the case 1/2 ≥ x ≥ 1/3, but
instead assume 1/r ≥ x ≥ 1/(r + 1) (which implies 1/(r − 1) ≥ x

1−x ≥ 1/r):

c(n, xn) =
1

xn

xn∑
i=1

c((1− x)n, i) =
1

xn

c((1− x)n)−
(1−x)n∑
i=xn+1

c((1− x)n, i)

 .

In this case, we use the fact that (1−x)n ≥ i ≥ xn+1 to deduce 1 ≥ i
(1−x)n >

x
1−x ≥ 1/r. We may therefore

apply the induction hypothesis to the terms in the sum.

c(n, xn) =
1

xn

c((1− x)n)−


(1−x)n

r−1∑
i=xn+1

Fr−1

(
i

(1− x)n

)
+ o(1)

= +

r−2∑
s=1

(1−x)n
s∑

i=
(1−x)n
(s+1)

+1

Fs

(
i

(1− x)n

)
+ o(1)




Each term is a Riemann sum converging to an integral of the corresponding Fs. We note that although each
o(1) error term is summed O(n) times, this is accounted for by the leading factor of 1/n, so these still vanish
in the limit n→∞.

In particular, we have

lim
n→∞

1

n

(1−x)n
s∑

i=
(1−x)n
(s+1)

+1

Fs

(
i

(1− x)n

)
=

∫ 1−x
s

1−x
s+1

Fs

(
t

1− x

)
dt

= (1− x)

∫ 1
s

1
s+1

Fs(t)dt.

We conclude that

lim
n→∞

c(n, xn) =
1− x
x
− 1− x

x

(∫ 1
r−1

x
1−x

Fr−1(t)dt+

r−2∑
s=1

∫ 1
s

1
s+1

Fs(t)dt

)
.

For x ∈ [1/(r + 1), 1/r], it is this quantity which we define to be Fr(x), and the above limit is exactly the
statement of the proposition. We conclude that limn→∞ c(n, nx) is continuous, but fails to be smooth at
{1/n | n ∈ Z>0}. �

We may differentiate the integral definition of Fr(x) to see what differential equation it can satisfy.

d

dx

(
x

1− x
Fr(x)

)
=

1

(1− x)2
Fr−1

(
x

1− x

)
This rearranges to

(1) Fr(x) + x(1− x)F ′r(x) = Fr−1

(
x

1− x

)
.
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Corollary 3.3. Because c(n, k) and b(n, k) differed only by rescaling, and the above relations are linear in
the Fr, we have

lim
n→∞

b(n, xn) = e−γFr(x)

whenever 1/r ≥ x ≥ 1/(r + 1).

4. Another approach

There is another path to finding the value e−γ . As soon as one knows that the limit limn→∞ b(n)/n exists,
one may determine the value of the limit as follows. The methods of Section 3 do not require the limit to
be known, so we have access to Equation 1 (the differential equation satisfied by Fr).

Remark 4.1. The differential equation can be guessed by taking the formula

b(n, k) =
k − 1

k
b(n− 1, k − 1) +

1

k
b(n− k, k),

setting k = xn, substituting the ansatz F (x) = b(n, xn), and rearranging to obtain

F (x)− F
(
x− 1−x

n−1

)
1−x
n−1

=

1
xn

(
F
(

x
1−x

)
− F

(
x− 1−x

n−1

))
1−x
n−1

,

and taking the limit n→∞ (where the left hand side becomes F ′(x)).

Let y = 1/x and G(y) = F (1/x) (where we unite all Fr into a single function defined for 0 ≤ x ≤ 1). Then,
the differential equation becomes

G(y)− (y − 1)G′(y) = G(y − 1)

which transforms the intervals 1/r ≥ x ≥ 1/(r+ 1) into r ≤ y ≤ r+ 1. The upshot of this is that the current

equation is well adapted for a Laplace transform. Writing Ĝ(t) for the Laplace transform of G, we obtain:

Ĝ(t) + (tĜ(t)−G(0)) +
d

dt
(tĜ(t)−G(0)) = e−tĜ(t),

using the boundary condition G(0) = 0, this becomes

d

dt
Ĝ(t) =

e−t − t− 2

t
Ĝ(t).

We may solve this explicitly, and log(Ĝ(t)) turns out to be very similar to an exponential integral. We may
now use standard properties of Laplace transforms to show express

1

G(∞)

∫ ∞
1

G(y)
dy

y2
=

1

F (0)

∫ 1

0

F (x)dx

in terms of integrals of the exponential integral or logarithmic integral (depending on how it is set up); these
can be solved exactly to obtain e−γ . Thus the problem reduces to showing that limx→0 F (x) = 1. It is not
difficult to show that b(n, k) ≤ 1 by induction on k, so the problem reduces to finding an appropriate lower
bound for b(n, k); I believe this can be done by induction also, but the argument is more elaborate.

4


	1. Preamble
	2. Asymptotics
	3. Understanding b(n,k)
	4. Another approach

