FRACTIONAL COUNTING OF PARTITIONS

This document was written by Christopher Ryba, with contributions from Andrew Ahn and Pavel Etingof.

1. Preamble

For a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$, let us define $w_{\lambda}=\lambda_{1} \lambda_{2} \cdots \lambda_{l}$. The main quantity of interest is

$$
b(n)=\sum_{\lambda \vdash n} \frac{1}{w_{\lambda}}
$$

We consider the generating function of this sequence:

$$
f(z)=\sum_{n \geq 0} b(n) z^{n}=\prod_{i \geq 1}\left(1-z^{i} / i\right)^{-1}
$$

Lemma 1.1. The coefficients of

$$
(1-z) f(z)=\sum_{n \geq 0}(b(n)-b(n-1)) z^{n}=\prod_{i \geq 2}\left(1-z^{i} / i\right)^{-1}
$$

are nonnegative.
Proof. If $\mu \cup\{1\}$ denotes the partition obtained from μ by adding a single part, we have that $w_{\mu \cup\{1\}}=w_{\mu}$, so

$$
b(n)=\sum_{\lambda \vdash n} \frac{1}{w_{\lambda}} \geq \sum_{\mu \vdash n-1} \frac{1}{w_{\mu \cup\{1\}}}=b(n-1) .
$$

2. Asymptotics

Theorem 2.1. We have $b(n)=e^{-\gamma} n(1+o(1))$ as $n \rightarrow \infty$.
Proof. Let us write, for $|z|<1$:

$$
\begin{aligned}
\log (f(z)) & =-\log (1-z)-\sum_{i \geq 2} \log \left(1-z^{i} / i\right) \\
& =-2 \log (1-z)-z-\sum_{i \geq 2}\left(\log \left(1-z^{i} / i\right)+z^{i} / i\right)
\end{aligned}
$$

By considering Taylor series, we have the estimate that

$$
|\log (1-w)+w|<|w|^{2}
$$

whenever $|w|$ is sufficiently small. If we define

$$
g(z)=-z-\sum_{i \geq 2}\left(\log \left(1-z^{i} / i\right)+z^{i} / i\right)
$$

then for $|z| \leq 1$, all sufficiently large terms in the sum are bounded by $1 / i^{2}$, in particular, $g(z)$ extends to a continuous function on the closed unit disc, and we have

$$
\log (f(z))=-2 \log (1-z)+g(z)
$$

which gives

$$
(1-z) f(z)=\frac{e^{g(z)}}{1-z}
$$

We may now apply the Hardy-Littlewood Tauberian theorem. This theorem asserts that if $a_{n} \geq 0$ is a sequence of real numbers such that

$$
\sum_{n \geq 0} a_{n} x^{n} \sim \frac{1}{1-x}
$$

as $x \rightarrow 1$ from below, then

$$
\sum_{k \leq n} a_{k} \sim n
$$

In our setting, Lemma 1 guarantees that we may apply the theorem after we multiply through by $e^{g(1)}$. We calculate

$$
g(1)=-1-\sum_{i \geq 2}(\log (1-1 / i)+1 / i)=-\gamma
$$

This proves the theorem.

3. Understanding $b(n, k)$

In this section x will be a number between zero and one.
Definition 3.1. Let

$$
c(n, k)=e^{\gamma} b(n,\lfloor k\rfloor)
$$

and

$$
c(n)=e^{\gamma} b(n)
$$

Using this new function will make the following calculations cleaner, although it only negligibly differs from the function of interest. For example, $\lim _{n \rightarrow \infty} c(n) / n=1$ according to our new convention. Note that $c(n, k)$ satisfies the same recurrence identities as $b(n,\lfloor k\rfloor)$.

Suppose that $1 \geq x \geq 1 / 2$. Then we have

$$
c(n, x n)=\frac{1}{x n} \sum_{i=1}^{x n} c((1-x) n, i)=\frac{c((1-x) n)}{x n}
$$

because $x n \geq(1-x) n$. By the result of the previous section, we may take the limit as $n \rightarrow \infty$, and obtain $\frac{1-x}{x}$.
Let us repeat this for $1 / 2 \geq x \geq 1 / 3$. We get

$$
c(n, x n)=\frac{1}{x n} \sum_{i=1}^{x n} c((1-x) n, i)=\frac{1}{x n}\left(c((1-x) n)-\sum_{i=x n+1}^{(1-x) n} c((1-x) n, i)\right) .
$$

The key observation is that for i between $x n+1$ and $(1-x) n, 2 i \geq(1-x) n$, so that $c((1-x) n, i)=$ $c((1-x) n-i) / i$ (similarly to the $1 \geq x \geq 1 / 2$ case). We may now take the limit as $n \rightarrow \infty$ (and recognise one of the terms as Riemann sum):

$$
\begin{aligned}
\frac{1-x}{x}-\frac{1}{x} \lim _{n \rightarrow \infty} \sum_{i=x n+1}^{(1-x) n} \frac{(1-x) n-i+o(n)}{n i} & =\frac{1-x}{x}-\frac{1}{x} \lim _{n \rightarrow \infty} \frac{1}{n}\left(o(n)+\sum_{i=x n+1}^{(1-x) n} \frac{(1-x)-\frac{i}{n}}{\frac{i}{n}}\right) \\
& =\frac{1-x}{x}-\frac{1}{x} \int_{x}^{1-x} \frac{(1-x)-t}{t} d t \\
& =\frac{2-3 x}{x}-\frac{(1-x)}{x} \log \left(\frac{1-x}{x}\right)
\end{aligned}
$$

Here we used the fact that $i=\Theta(n)$, so that $\sum_{i=x n+1}^{(1-x) n} o(n) / i=o(n)$. We notice immediately that our limit function is not smooth at $x=1 / 2$.

Proposition 3.2. For $i \in \mathbb{Z}_{>0}$, there exists a smooth function $F_{r}(t)$ such that for $x \in\left[\frac{1}{r+1}, \frac{1}{r}\right]$,

$$
c(n, x n)=F_{r}(x)+o(1)
$$

as $n \rightarrow \infty$.
Proof. We have already illustrated this in for $1 \geq x \geq 1 / 2$, where we obtained $F_{1}(x)=\frac{1-x}{x}$; this forms the base case of an induction on r. We now perform the same manipulation as for the case $1 / 2 \geq x \geq 1 / 3$, but instead assume $1 / r \geq x \geq 1 /(r+1)$ (which implies $\left.1 /(r-1) \geq \frac{x}{1-x} \geq 1 / r\right)$:

$$
c(n, x n)=\frac{1}{x n} \sum_{i=1}^{x n} c((1-x) n, i)=\frac{1}{x n}\left(c((1-x) n)-\sum_{i=x n+1}^{(1-x) n} c((1-x) n, i)\right) .
$$

In this case, we use the fact that $(1-x) n \geq i \geq x n+1$ to deduce $1 \geq \frac{i}{(1-x) n}>\frac{x}{1-x} \geq 1 / r$. We may therefore apply the induction hypothesis to the terms in the sum.

$$
\begin{aligned}
c(n, x n) & =\frac{1}{x n}\left(c((1-x) n)-\left(\sum_{i=x n+1}^{\frac{(1-x) n}{r-1}} F_{r-1}\left(\frac{i}{(1-x) n}\right)+o(1)\right.\right. \\
& \left.\left.=\quad+\sum_{s=1}^{r-2} \sum_{i=\frac{(1-x) n}{(s+1)}+1}^{\frac{(1-x) n}{s}} F_{s}\left(\frac{i}{(1-x) n}\right)+o(1)\right)\right)
\end{aligned}
$$

Each term is a Riemann sum converging to an integral of the corresponding F_{s}. We note that although each $o(1)$ error term is summed $\mathcal{O}(n)$ times, this is accounted for by the leading factor of $1 / n$, so these still vanish in the limit $n \rightarrow \infty$.

In particular, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=\frac{(1-x) n}{(s+1)}+1}^{\frac{(1-x) n}{s}} F_{s}\left(\frac{i}{(1-x) n}\right) & =\int_{\frac{1-x}{s+1}}^{\frac{1-x}{s}} F_{s}\left(\frac{t}{1-x}\right) d t \\
& =(1-x) \int_{\frac{1}{s+1}}^{\frac{1}{s}} F_{s}(t) d t
\end{aligned}
$$

We conclude that

$$
\lim _{n \rightarrow \infty} c(n, x n)=\frac{1-x}{x}-\frac{1-x}{x}\left(\int_{\frac{x}{1-x}}^{\frac{1}{r-1}} F_{r-1}(t) d t+\sum_{s=1}^{r-2} \int_{\frac{1}{s+1}}^{\frac{1}{s}} F_{s}(t) d t\right)
$$

For $x \in[1 /(r+1), 1 / r]$, it is this quantity which we define to be $F_{r}(x)$, and the above limit is exactly the statement of the proposition. We conclude that $\lim _{n \rightarrow \infty} c(n, n x)$ is continuous, but fails to be smooth at $\left\{1 / n \mid n \in \mathbb{Z}_{>0}\right\}$.

We may differentiate the integral definition of $F_{r}(x)$ to see what differential equation it can satisfy.

$$
\frac{d}{d x}\left(\frac{x}{1-x} F_{r}(x)\right)=\frac{1}{(1-x)^{2}} F_{r-1}\left(\frac{x}{1-x}\right)
$$

This rearranges to

$$
\begin{equation*}
F_{r}(x)+x(1-x) F_{r}^{\prime}(x)=F_{r-1}\left(\frac{x}{1-x}\right) \tag{1}
\end{equation*}
$$

Corollary 3.3. Because $c(n, k)$ and $b(n, k)$ differed only by rescaling, and the above relations are linear in the F_{r}, we have

$$
\lim _{n \rightarrow \infty} b(n, x n)=e^{-\gamma} F_{r}(x)
$$

whenever $1 / r \geq x \geq 1 /(r+1)$.

4. Another approach

There is another path to finding the value $e^{-\gamma}$. As soon as one knows that the limit $\lim _{n \rightarrow \infty} b(n) / n$ exists, one may determine the value of the limit as follows. The methods of Section 3 do not require the limit to be known, so we have access to Equation 1 (the differential equation satisfied by F_{r}).

Remark 4.1. The differential equation can be guessed by taking the formula

$$
b(n, k)=\frac{k-1}{k} b(n-1, k-1)+\frac{1}{k} b(n-k, k),
$$

setting $k=x n$, substituting the ansatz $F(x)=b(n, x n)$, and rearranging to obtain

$$
\frac{F(x)-F\left(x-\frac{1-x}{n-1}\right)}{\frac{1-x}{n-1}}=\frac{\frac{1}{x n}\left(F\left(\frac{x}{1-x}\right)-F\left(x-\frac{1-x}{n-1}\right)\right)}{\frac{1-x}{n-1}},
$$

and taking the limit $n \rightarrow \infty$ (where the left hand side becomes $F^{\prime}(x)$).
Let $y=1 / x$ and $G(y)=F(1 / x)$ (where we unite all F_{r} into a single function defined for $0 \leq x \leq 1$). Then, the differential equation becomes

$$
G(y)-(y-1) G^{\prime}(y)=G(y-1)
$$

which transforms the intervals $1 / r \geq x \geq 1 /(r+1)$ into $r \leq y \leq r+1$. The upshot of this is that the current equation is well adapted for a Laplace transform. Writing $\hat{G}(t)$ for the Laplace transform of G, we obtain:

$$
\hat{G}(t)+(t \hat{G}(t)-G(0))+\frac{d}{d t}(t \hat{G}(t)-G(0))=e^{-t} \hat{G}(t)
$$

using the boundary condition $G(0)=0$, this becomes

$$
\frac{d}{d t} \hat{G}(t)=\frac{e^{-t}-t-2}{t} \hat{G}(t) .
$$

We may solve this explicitly, and $\log (\hat{G}(t))$ turns out to be very similar to an exponential integral. We may now use standard properties of Laplace transforms to show express

$$
\frac{1}{G(\infty)} \int_{1}^{\infty} G(y) \frac{d y}{y^{2}}=\frac{1}{F(0)} \int_{0}^{1} F(x) d x
$$

in terms of integrals of the exponential integral or logarithmic integral (depending on how it is set up); these can be solved exactly to obtain $e^{-\gamma}$. Thus the problem reduces to showing that $\lim _{x \rightarrow 0} F(x)=1$. It is not difficult to show that $b(n, k) \leq 1$ by induction on k, so the problem reduces to finding an appropriate lower bound for $b(n, k)$; I believe this can be done by induction also, but the argument is more elaborate.

