FRACTIONAL COUNTING OF PARTITIONS

This document was written by Christopher Ryba, with contributions from Andrew Ahn and Pavel Etingof.

1. Preamble

For a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$, let us define $w_{\lambda} = \lambda_1 \lambda_2 \cdots \lambda_l$. The main quantity of interest is

$$b(n) = \sum_{\lambda \vdash n} \frac{1}{w_{\lambda}}.$$

We consider the generating function of this sequence:

$$f(z) = \sum_{n \ge 0} b(n) z^n = \prod_{i \ge 1} (1 - z^i/i)^{-1}.$$

Lemma 1.1. The coefficients of

$$(1-z)f(z) = \sum_{n\geq 0} (b(n) - b(n-1))z^n = \prod_{i\geq 2} (1-z^i/i)^{-1}.$$

are nonnegative.

Proof. If $\mu \cup \{1\}$ denotes the partition obtained from μ by adding a single part, we have that $w_{\mu \cup \{1\}} = w_{\mu}$, so

$$b(n) = \sum_{\lambda \vdash n} \frac{1}{w_{\lambda}} \ge \sum_{\mu \vdash n-1} \frac{1}{w_{\mu \cup \{1\}}} = b(n-1).$$

2. Asymptotics

Theorem 2.1. We have $b(n) = e^{-\gamma}n(1+o(1))$ as $n \to \infty$.

Proof. Let us write, for |z| < 1:

$$\begin{aligned} \log(f(z)) &= -\log(1-z) - \sum_{i \ge 2} \log(1-z^i/i) \\ &= -2\log(1-z) - z - \sum_{i \ge 2} (\log(1-z^i/i) + z^i/i). \end{aligned}$$

By considering Taylor series, we have the estimate that

$$|\log(1-w) + w| < |w|^2$$

whenever |w| is sufficiently small. If we define

$$g(z) = -z - \sum_{i \ge 2} (\log(1 - z^i/i) + z^i/i),$$

then for $|z| \leq 1$, all sufficiently large terms in the sum are bounded by $1/i^2$, in particular, g(z) extends to a continuous function on the closed unit disc, and we have

$$\log(f(z)) = -2\log(1-z) + g(z)$$

which gives

$$(1-z)f(z) = \frac{e^{g(z)}}{1-z}$$

Date: November 5, 2018.

We may now apply the Hardy-Littlewood Tauberian theorem. This theorem asserts that if $a_n \ge 0$ is a sequence of real numbers such that

$$\sum_{n\geq 0} a_n x^n \sim \frac{1}{1-x}$$

as $x \to 1$ from below, then

$$\sum_{k \le n} a_k \sim n.$$

In our setting, Lemma 1 guarantees that we may apply the theorem after we multiply through by $e^{g(1)}$. We calculate

$$g(1) = -1 - \sum_{i \ge 2} (\log(1 - 1/i) + 1/i) = -\gamma$$

This proves the theorem.

3. UNDERSTANDING b(n, k)

In this section x will be a number between zero and one.

Definition 3.1. Let

$$c(n,k) = e^{\gamma}b(n,\lfloor k \rfloor)$$

and

$$c(n) = e^{\gamma} b(n).$$

Using this new function will make the following calculations cleaner, although it only negligibly differs from the function of interest. For example, $\lim_{n\to\infty} c(n)/n = 1$ according to our new convention. Note that c(n, k) satisfies the same recurrence identities as b(n, |k|).

Suppose that $1 \ge x \ge 1/2$. Then we have

$$c(n,xn) = \frac{1}{xn} \sum_{i=1}^{xn} c((1-x)n,i) = \frac{c((1-x)n)}{xn},$$

because $xn \ge (1-x)n$. By the result of the previous section, we may take the limit as $n \to \infty$, and obtain $\frac{1-x}{x}$.

Let us repeat this for $1/2 \ge x \ge 1/3$. We get

$$c(n,xn) = \frac{1}{xn} \sum_{i=1}^{xn} c((1-x)n,i) = \frac{1}{xn} \left(c((1-x)n) - \sum_{i=xn+1}^{(1-x)n} c((1-x)n,i) \right).$$

The key observation is that for *i* between xn + 1 and (1 - x)n, $2i \ge (1 - x)n$, so that c((1 - x)n, i) = c((1 - x)n - i)/i (similarly to the $1 \ge x \ge 1/2$ case). We may now take the limit as $n \to \infty$ (and recognise one of the terms as Riemann sum):

$$\frac{1-x}{x} - \frac{1}{x} \lim_{n \to \infty} \sum_{i=xn+1}^{(1-x)n} \frac{(1-x)n - i + o(n)}{ni} = \frac{1-x}{x} - \frac{1}{x} \lim_{n \to \infty} \frac{1}{n} \left(o(n) + \sum_{i=xn+1}^{(1-x)n} \frac{(1-x) - \frac{i}{n}}{\frac{i}{n}} \right)$$
$$= \frac{1-x}{x} - \frac{1}{x} \int_{x}^{1-x} \frac{(1-x) - t}{t} dt$$
$$= \frac{2-3x}{x} - \frac{(1-x)}{x} \log\left(\frac{1-x}{x}\right)$$

Here we used the fact that $i = \Theta(n)$, so that $\sum_{i=xn+1}^{(1-x)n} o(n)/i = o(n)$. We notice immediately that our limit function is not smooth at x = 1/2.

Proposition 3.2. For $i \in \mathbb{Z}_{>0}$, there exists a smooth function $F_r(t)$ such that for $x \in [\frac{1}{r+1}, \frac{1}{r}]$,

$$c(n, xn) = F_r(x) + o(1)$$

as $n \to \infty$.

Proof. We have already illustrated this in for $1 \ge x \ge 1/2$, where we obtained $F_1(x) = \frac{1-x}{x}$; this forms the base case of an induction on r. We now perform the same manipulation as for the case $1/2 \ge x \ge 1/3$, but instead assume $1/r \ge x \ge 1/(r+1)$ (which implies $1/(r-1) \ge \frac{x}{1-x} \ge 1/r$):

$$c(n,xn) = \frac{1}{xn} \sum_{i=1}^{xn} c((1-x)n,i) = \frac{1}{xn} \left(c((1-x)n) - \sum_{i=xn+1}^{(1-x)n} c((1-x)n,i) \right).$$

In this case, we use the fact that $(1-x)n \ge i \ge xn+1$ to deduce $1 \ge \frac{i}{(1-x)n} > \frac{x}{1-x} \ge 1/r$. We may therefore apply the induction hypothesis to the terms in the sum.

$$c(n,xn) = \frac{1}{xn} \left(c((1-x)n) - \left(\sum_{i=xn+1}^{\frac{(1-x)n}{r-1}} F_{r-1}\left(\frac{i}{(1-x)n}\right) + o(1) \right) + o(1) \right) + o(1) + \sum_{s=1}^{r-2} \sum_{i=\frac{(1-x)n}{(s+1)}+1}^{\frac{(1-x)n}{s}} F_s\left(\frac{i}{(1-x)n}\right) + o(1) \right) \right)$$

Each term is a Riemann sum converging to an integral of the corresponding F_s . We note that although each o(1) error term is summed $\mathcal{O}(n)$ times, this is accounted for by the leading factor of 1/n, so these still vanish in the limit $n \to \infty$.

In particular, we have

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=\frac{(1-x)n}{(s+1)}+1}^{\frac{(1-x)n}{s}} F_s\left(\frac{i}{(1-x)n}\right) = \int_{\frac{1-x}{s+1}}^{\frac{1-x}{s}} F_s\left(\frac{t}{1-x}\right) dt$$
$$= (1-x) \int_{\frac{1}{s+1}}^{\frac{1}{s}} F_s(t) dt.$$

We conclude that

$$\lim_{n \to \infty} c(n, xn) = \frac{1-x}{x} - \frac{1-x}{x} \left(\int_{\frac{x}{1-x}}^{\frac{1}{r-1}} F_{r-1}(t) dt + \sum_{s=1}^{r-2} \int_{\frac{1}{s+1}}^{\frac{1}{s}} F_s(t) dt \right).$$

For $x \in [1/(r+1), 1/r]$, it is this quantity which we define to be $F_r(x)$, and the above limit is exactly the statement of the proposition. We conclude that $\lim_{n\to\infty} c(n, nx)$ is continuous, but fails to be smooth at $\{1/n \mid n \in \mathbb{Z}_{>0}\}$.

We may differentiate the integral definition of $F_r(x)$ to see what differential equation it can satisfy.

$$\frac{d}{dx}\left(\frac{x}{1-x}F_r(x)\right) = \frac{1}{(1-x)^2}F_{r-1}\left(\frac{x}{1-x}\right)$$

This rearranges to

(1)
$$F_r(x) + x(1-x)F'_r(x) = F_{r-1}\left(\frac{x}{1-x}\right).$$

Corollary 3.3. Because c(n,k) and b(n,k) differed only by rescaling, and the above relations are linear in the F_r , we have

$$\lim_{n \to \infty} b(n, xn) = e^{-\gamma} F_r(x)$$

whenever $1/r \ge x \ge 1/(r+1)$.

4. Another Approach

There is another path to finding the value $e^{-\gamma}$. As soon as one knows that the limit $\lim_{n\to\infty} b(n)/n$ exists, one may determine the value of the limit as follows. The methods of Section 3 do not require the limit to be known, so we have access to Equation 1 (the differential equation satisfied by F_r).

Remark 4.1. The differential equation can be guessed by taking the formula

$$b(n,k) = \frac{k-1}{k}b(n-1,k-1) + \frac{1}{k}b(n-k,k)$$

setting k = xn, substituting the ansatz F(x) = b(n, xn), and rearranging to obtain

$$\frac{F(x) - F\left(x - \frac{1-x}{n-1}\right)}{\frac{1-x}{n-1}} = \frac{\frac{1}{xn}\left(F\left(\frac{x}{1-x}\right) - F\left(x - \frac{1-x}{n-1}\right)\right)}{\frac{1-x}{n-1}},$$

and taking the limit $n \to \infty$ (where the left hand side becomes F'(x)).

Let y = 1/x and G(y) = F(1/x) (where we unite all F_r into a single function defined for $0 \le x \le 1$). Then, the differential equation becomes

$$G(y) - (y - 1)G'(y) = G(y - 1)$$

which transforms the intervals $1/r \ge x \ge 1/(r+1)$ into $r \le y \le r+1$. The upshot of this is that the current equation is well adapted for a Laplace transform. Writing $\hat{G}(t)$ for the Laplace transform of G, we obtain:

$$\hat{G}(t) + (t\hat{G}(t) - G(0)) + \frac{d}{dt}(t\hat{G}(t) - G(0)) = e^{-t}\hat{G}(t),$$

using the boundary condition G(0) = 0, this becomes

$$\frac{d}{dt}\hat{G}(t) = \frac{e^{-t} - t - 2}{t}\hat{G}(t)$$

We may solve this explicitly, and $\log(\hat{G}(t))$ turns out to be very similar to an exponential integral. We may now use standard properties of Laplace transforms to show express

$$\frac{1}{G(\infty)}\int_1^\infty G(y)\frac{dy}{y^2} = \frac{1}{F(0)}\int_0^1 F(x)dx$$

in terms of integrals of the exponential integral or logarithmic integral (depending on how it is set up); these can be solved exactly to obtain $e^{-\gamma}$. Thus the problem reduces to showing that $\lim_{x\to 0} F(x) = 1$. It is not difficult to show that $b(n,k) \leq 1$ by induction on k, so the problem reduces to finding an appropriate lower bound for b(n,k); I believe this can be done by induction also, but the argument is more elaborate.