AN ANSWER TO A QUESTION OF ZEILBERGER AND ZEILBERGER ABOUT FRACTIONAL COUNTING OF PARTITIONS

ANDREW AHN AND CHRISTOPHER RYBA

Abstract. We answer a question of Zeilberger and Zeilberger about certain partition statistics.

1. Introduction

For a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$, define $w_{\lambda}=\lambda_{1} \lambda_{2} \cdots \lambda_{l}$ (this is the product of the parts of λ). Zeilberger and Zeilberger [ZZ18] define two quantities:

$$
b(n)=\sum_{\lambda \vdash n} \frac{1}{w_{\lambda}}
$$

and

$$
b(n, k)=\sum_{\substack{\lambda \vdash n \\ \lambda_{1}=k}} \frac{1}{w_{\lambda}}
$$

The latter sum is over partitions of n whose largest part is equal to k, so $b(n)=\sum_{i=1}^{n} b(n, k)$. They ask to determine

$$
f(x)=\lim _{n \rightarrow \infty} b(n,\lfloor x n\rfloor)
$$

as a function on $[0,1]$. To answer this question, we use two tools. Firstly, a recurrence for $b(n, k)$ given by Zeilberger and Zeilberger [ZZ18]:

$$
b(n, k)=\frac{1}{k} \sum_{i=1}^{k} b(n-k, i)
$$

Secondly, we use the asymptotic behaviour of $b(n)$, first considered by Lehmer Leh72.
Theorem 1.1 (Lehmer). We have $b(n)=e^{-\gamma} n(1+o(1))$ as $n \rightarrow \infty$, where γ is Euler's gamma.
1.1. Acknowledgements. C.R. would like to thank Pavel Etingof for useful conversations.

$$
\text { 2. Understanding } b(n, k)
$$

In this section x will be a number in $[0,1]$.
Definition 2.1. Let

$$
c(n, k)=e^{\gamma} b(n, k)
$$

and

$$
c(n)=e^{\gamma} b(n)
$$

Using this new function will make the following calculations cleaner. For example, $\lim _{n \rightarrow \infty} c(n) / n=1$ according to our new convention. Note that $c(n, k)$ satisfies the same recurrence identities as $b(n, k)$.
Example 2.2. Suppose that $x \in(1 / 2,1]$. Then for n sufficiently large, we have

$$
c(n,\lfloor x n\rfloor)=\frac{1}{\lfloor x n\rfloor} \sum_{i=1}^{\lfloor x n\rfloor} c(n-\lfloor x n\rfloor, i)=\frac{c(n-\lfloor x n\rfloor)}{\lfloor x n\rfloor}
$$

because $\lfloor x n\rfloor \geq n-\lfloor x n\rfloor$ for n sufficiently large. By Theorem 1.1, we may take the limit as $n \rightarrow \infty$, and obtain $\frac{1-x}{x}$.

Proposition 2.3. For $r \in \mathbb{Z}_{>0}$, there exists a smooth function $F_{r}(t)$ such that for $x \in\left(\frac{1}{r+1}, \frac{1}{r}\right]$,

$$
c(n,\lfloor x n\rfloor)=F_{r}(x)+o(1)
$$

as $n \rightarrow \infty$. Moreover, these $F_{r}(x)$ are related via

$$
F_{r}(x)=\frac{1-x}{x}-\frac{1-x}{x}\left(\int_{\frac{x}{1-x}}^{\frac{1}{r-1}} F_{r-1}(t) d t+\sum_{s=1}^{r-2} \int_{\frac{1}{s+1}}^{\frac{1}{s}} F_{s}(t) d t\right) .
$$

Proof. Example 2.2 demonstrated this for $x \in(1 / 2,1]$, where we obtained $F_{1}(x)=\frac{1-x}{x}$; this forms the base case of an induction on r. We now assume $x \in\left(\frac{1}{r+1}, \frac{1}{r}\right]$;

$$
c(n,\lfloor x n\rfloor)=\frac{1}{\lfloor x n\rfloor} \sum_{i=1}^{\lfloor x n\rfloor} c(n-\lfloor x n\rfloor, i)=\frac{1}{\lfloor x n\rfloor}\left(c(n-\lfloor x n\rfloor)-\sum_{i=\lfloor x n\rfloor+1}^{n-\lfloor x n\rfloor} c(n-\lfloor x n\rfloor, i)\right) .
$$

In the latter sum, the ratio $\frac{i}{n-\lfloor x n\rfloor}$ is minimised when $i=\lfloor x n\rfloor+1$, and the resulting quantity is a weakly decreasing function of x. Because $x>\frac{1}{r+1}$, we conclude

$$
\frac{i}{n-\lfloor x n\rfloor} \geq \frac{\left\lfloor\frac{n}{r+1}\right\rfloor+1}{n-\left\lfloor\frac{n}{r+1}\right\rfloor} \geq 1 / r .
$$

We may therefore apply the induction hypothesis to the terms in the sum.

$$
\begin{aligned}
& c(n,\lfloor x n\rfloor)= \frac{1}{\lfloor x n\rfloor}\left(c(n-\lfloor x n\rfloor)-\left(\sum_{i=\lfloor x n\rfloor+1}^{\left\lfloor\frac{n-\lfloor x n\rfloor}{r-1}\right\rfloor} F_{r-1}\left(\frac{i}{n-\lfloor x n\rfloor}\right)+o(1)\right.\right. \\
&=\left.+\sum_{s=1}^{r-2} \sum_{i=\left\lfloor\frac{n-\lfloor x n\rfloor}{(s+1)}\right\rfloor+1}^{s s-\lfloor x\rfloor}\right\rfloor \\
&\left.\left.F_{s}\left(\frac{i}{n-\lfloor x n\rfloor}\right)+o(1)\right)\right)
\end{aligned}
$$

Each term is a Riemann sum converging to an integral of the corresponding F_{s}. We note that although each $o(1)$ error term is summed $\mathcal{O}(n)$ times, this is accounted for by the leading factor of $1 /\lfloor x n\rfloor$, so these still vanish in the limit $n \rightarrow \infty$. Note that we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=\left\lfloor\frac{n-\lfloor x\rfloor\rfloor}{(s+1)}\right\rfloor+1}^{\left\lfloor\frac{n-\lfloor x n\rfloor}{s}\right\rfloor} F_{s}\left(\frac{i}{n-\lfloor x n\rfloor}\right)=\int_{\frac{1-x}{s+1}}^{\frac{1-x}{s}} F_{s}\left(\frac{t}{1-x}\right) d t=(1-x) \int_{\frac{1}{s+1}}^{\frac{1}{s}} F_{s}(t) d t .
$$

We conclude that

$$
\lim _{n \rightarrow \infty} c(n,\lfloor x n\rfloor)=\frac{1-x}{x}-\frac{1-x}{x}\left(\int_{\frac{x}{1-x}}^{\frac{1}{r-1}} F_{r-1}(t) d t+\sum_{s=1}^{r-2} \int_{\frac{1}{s+1}}^{\frac{1}{s}} F_{s}(t) d t\right) .
$$

For $x \in\left(\frac{1}{r+1}, \frac{1}{r}\right]$, it is this quantity which we define to be $F_{r}(x)$, and the above limit is exactly the statement of the proposition. We conclude that $\lim _{n \rightarrow \infty} c(n,\lfloor n x\rfloor)$ is smooth for $x \notin\left\{1 / n \mid n \in \mathbb{Z}_{>0}\right\}$.

Example 2.4. We may compute

$$
F_{2}(x)=\frac{1-x}{x}-\frac{1-x}{x}\left(\int_{\frac{x}{1-x}}^{1} \frac{1-t}{t} d t\right)=\frac{2-3 x}{x}-\frac{1-x}{x} \log \left(\frac{1-x}{x}\right) .
$$

Remark 2.5. We may differentiate the expression for $F_{r}(x)$ to obtain a differential equation satisfied by $F_{r}(x)$:

$$
\frac{d}{d x}\left(\frac{x}{1-x} F_{r}(x)\right)=\frac{1}{(1-x)^{2}} F_{r-1}\left(\frac{x}{1-x}\right)
$$

Finally, we obtain our result.

Corollary 2.6. Because $c(n, k)$ and $b(n, k)$ differed only by rescaling, and the above relations are linear in the F_{r}, we have

$$
\lim _{n \rightarrow \infty} b(n,\lfloor x n\rfloor)=e^{-\gamma} F_{r}(x)
$$

whenever $x \in\left(\frac{1}{r+1}, \frac{1}{r}\right]$.
Remark 2.7. Suppose we assemble all the functions $F_{r}(x)$ into a single function $F(x)$ on $(0,1]$. Let $G(x)=$ $F(1 / x)$. Then, the differential equation becomes

$$
G(x)-(x-1) G^{\prime}(x)=G(x-1)
$$

The upshot of this is that the current equation is well adapted for a Laplace transform. Writing $\hat{G}(t)$ for the Laplace transform of $G(x)$, we obtain:

$$
\hat{G}(t)+(t \hat{G}(t)-G(0))+\frac{d}{d t}(t \hat{G}(t)-G(0))=e^{-t} \hat{G}(t)
$$

using the boundary condition $G(0)=0$, this becomes

$$
\frac{d}{d t} \hat{G}(t)=\frac{e^{-t}-t-2}{t} \hat{G}(t)
$$

We may solve this explicitly:

$$
\hat{G}(t)=K t^{-2} \exp (E i(-t)-t)
$$

where $E i$ is the exponential integral, and K is a constant.

References

[Leh72] D Lehmer. On reciprocally weighted partitions. Acta Arithmetica, 21:379-388, 1972.
[ZZ18] Doron Zeilberger and Noam Zeilberger. Two questions about the fractional counting of partitions. arXiv preprint arXiv:1810.12701, 2018.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
E-mail address: A.A.: ajahn@mit.edu and C.R.: ryba@mit.edu

