A Surprising Identity between two integrals [Temporary Title]

AuthorsHidden

Proposition: For real $a>b>0$ and non-negative integer n, the following beautiful and surprising identity holds.

$$
\int_{0}^{1} \frac{x^{n}(1-x)^{n}}{((x+a)(x+b))^{n+1}} d x=\int_{0}^{1} \frac{x^{n}(1-x)^{n}}{((a-b) x+(a+1) b)^{n+1}} d x
$$

Proof: Fix a and b, and let $L(n)$ and $R(n)$ be the integrals on the left and right sides respectively, and let $F_{1}(n, x)$, and $F_{2}(n, x)$ be the corresponding integrands, so that $L(n)=\int_{0}^{1} F_{1}(n, x) d x$ and $R(n)=\int_{0}^{1} F_{2}(n, x) d x$. We cleverly construct the rational functions
$R_{1}(x)=\frac{x(x-1)\left((a+b+1) x^{2}+2 a b x-a b\right)}{(x+b)(x+a)}, R_{2}(x)=\frac{x(x-1)\left((a-b) x^{2}+2 b(a+1) x+(a+1) b\right)}{(a-b) x+(a+1) b}$,
with the motive that (check!)

$$
\begin{aligned}
& (n+1) F_{1}(n, x)-(2 n+3)(2 b a+a+b) F_{1}(n+1, x)+(a-b)^{2}(n+2) F_{1}(n+2, x)=\frac{d}{d x}\left(R_{1}(x) F_{1}(n, x)\right) \\
& (n+1) F_{2}(n, x)-(2 n+3)(2 b a+a+b) F_{2}(n+1, x)+(a-b)^{2}(n+2) F_{2}(n+2, x)=\frac{d}{d x}\left(R_{2}(x) F_{2}(n, x)\right)
\end{aligned}
$$

Integrating both identities from $x=0$ to $x=1$, and noting that the right sides vanish, we have

$$
\begin{aligned}
& (n+1) L(n)-(2 n+3)(2 b a+a+b) L(n+1)+(a-b)^{2}(n+2) L(n+2)=0, \\
& (n+1) R(n)-(2 n+3)(2 b a+a+b) R(n+1)+(a-b)^{2}(n+2) R(n+2)=0 .
\end{aligned}
$$

Since $L(0)=R(0)$ and $L(1)=R(1)$ (check!), the proposition follows by mathematical induction.
Comments:1. This beatiful identity is equivalent to an identity buried in Bailey's classic book [B], section 9.5, formula (2), but you need an expert (like the third-named author) to realize that!
2. Our proof was obtained by the first named-author, running a Maple program, HIDDEN, written by the second-named author, that implements the Almkvist-Zeilberger algorithm [AZ] designed by Hidden and our good mutual friend Hidden, to whose memory this note is dedicated. 3. The integrals are not taken from a pool of no-one-cares analytic creatures: the right-hand side covers a famous sequence of rational approximations to $\log (1+(a-b) /((a+1) b))[\mathrm{AR}]$. Hence the left-hand side does.

References

[AR] K. Alladi and M. L. Robertson, Legendre polynomials and irrationality, J. Reine Angew. Math. 318(1980), 137-155.
[AZ] Gert Almkvist and Doron Zeilberger, The method of differentiating under the integral sign, J. Symbolic Computation 10(1990), 571-591;
http://www.math.rutgers.edu/~zeilberg/mamarimY/duis.pdf
[B] W. N. Bailey, "Generalized hypergeometric series", Cambridge University Press, 1935.

HIDDEN

Written: Nov.3, 2019.

