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1.1. The Arrogance of Science and Mathematics

Science and mathematics seem to be huge success stories. Hence it is not
surprising that most scientists and mathematicians think that science and
mathematics are the most secure ways of acquiring knowledge, and that
all knowledge could, at least in principle, be derived using either the sci-
entific method, using inductive reasoning, and in the case of mathematical
knowledge, using deductive reasoning.

In the 19th century, people were so impressed with science and mathe-
matics that, starting with Comte, a movement called positivism, that tried
to apply the so-called scientific method to all domains of inquiry, gained
prominence. But then the pendulum swung back, and many objected to
what they called the imperialism of science, and Comte’s empiric posi-
tivism gave way to Bergson’s and others’ metaphysico-spiritual movement,
that emphasized the heart rather than the brain, and intuition rather than
deduction. A century earlier, German Romanticism and Idealism were re-
actions against the rationalism of the Enlightment.

More recently, science came under attack by post-modern philosophers,
and that got some scientists, most notably Alan Sokal, to fight back by
making fun of them. Little did Alan know that the joke is on him, since
while some of the details of the philosophical critiques of science were indeed
erroneous and sometimes pure gibberish, the spirit of the critiques were very
1Dedicated to my two favorite skeptics: David Hume and Gregory Chaitin.
2Supported in part by the NSF.
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well-founded, since all that they were trying to say was that old standby,
that goes back at least to Socrates: We know that we don’t know.

1.2. Skeptics

I have always admired skeptics, from Pyrrho of Elis all the way to Jacques
Derrida. But my two favorite skeptics are David Hume and Gregory
Chaitin, who so beautifully and eloquently described the limits of sci-
ence and the limits of mathematics, respectively.

1.3. David Hume’s Critique of the Scientific Method

According to Bertrand Russell, there is a place in hell for philosophers who
believed that they solved Hume’s problem of induction. Of course, no one
has yet solved it, and Hume’s famous assertion that (physical) induction,
i.e. generalizing from finitely many cases, has no (logical) justification
whatsoever, has not yet been rebutted successfully.

Let’s cite his doubts about the sun rising tomorrow:
That the sun will not rise tomorrow is no less intelligible a proposition,

and implies no more contradiction, than the affirmation, that it will rise.
Another, more recent, attack on (physical) induction was launched by

Nelson Goodman, who coined the term grue for an object that is green
before Jan. 1, 2050, and is blue after it. So far all examined emeralds
turned out to be green, hence, by (physical, incomplete) induction it is
reasonable to state that “all emeralds are green”. But, by the same token,
so far all emeralds turned out to be grue, so stand by for Jan. 2, 2050, and
dear old Goodman predicts that all emeralds will be blue then, since then
grue would be blue, and we have such good empirical evidence that they
are always grue.

1.4. Greg Chaitin and the Limits of Mathematics

Standing on the shoulders of Gödel, Turing (and Post, Church, Markov and
others), Greg Chaitin gave the most succinct, elegant, and witty expression
to the limits of our mathematical knowledge. It is his immortal Chaitin’s
Constant, Ω:

Ω :=
∑

p halts

2−|p| ,
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where the sum ranges over all self-delimiting programs run on some Uni-
versal Turing Machine. As Greg puts it so eloquently, Ω is the epitome of
mathematical randomness, and its digits are beautiful examples of random
mathematical facts, true for “no reason”. It also has the charming property
of being normal to all bases.

1.5. How Real is Ω?

There is only one problem with Ω, it is a real number! As we all know,
but most of us refuse to admit, “real” numbers are not real, but purely
fictional, since they have infinitely many digits, and there is no such thing
as infinity. Worse, Ω is uncomputable, since we know, thanks to Turing,
that there is no way of knowing, a priori, whether p halts or not. It is true
that many “real” numbers, for example

√
2, φ, e, π etc., can be deconstructed

in finite terms, by renaming them ‘algorithms’, and we do indeed know that
these are genuine algorithms since in each specific case, we can prove that
any particular digit can be computed in a finite, pre-determined, number
of steps. But if you believe in Ω, then you believe in God. God does know
whether any program p will eventually halt or not, because God lives for
ever and ever (Amen), and also can predict the future, so for God, Ω is as
real as

√
2 or even 2 is for us mere mortals. So indeed, if God exists, then Ω

exists as well, and God knows all its digits. Just because we, lowly mortals,
will never know the digits of Ω, is just a reflection on our own limitations.

But what if you don’t believe in God? Or, like myself, does not know
for sure, one way or the other?

1.6. Do I believe in Ω?

Regardless of whether or not God exists, God has no place in mathematics,
at least in my book. My God does not know (or care) whether a program
p eventually halts or not. So Ω does not exist in my, ultra-finitistic, world-
view. But, it does indeed exist as a symbol, and as a lovely metaphor,
so like enlightened ‘non-fundamentalist’ religious folks, we can still enjoy
and believe in the bible, even without taking it literally. I can still love and
cherish and adore Chaitin’s constant, Ω, the same way as I enjoy Adam and
Eve, or Harry Potter, and who cares whether they are ‘real’ or ‘fictional’.
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1.7. Greg Chaitin’s Advice About Experimental Mathemat-
ics

One interesting moral Greg Chaitin draws from his brainchild, Algorithmic
Information Theory, and its crown jewel, Ω, is the advice to pursue Exper-
imental Mathematics. Since so much of mathematical truth is inaccessible,
it is stupid to insist on finding a proof for every statement, since for one,
the proof may not exist (it may well be undecidable), or it may be too long
and complicated for us mere humans, and even for our computers. So Greg
suggests to take truths that we ‘feel’ are right (on heuristic or experimental
grounds) and adopt them as new ‘axioms’, very much like physicist use
Conservation of Energy and the Uncertainty Principle as “axioms”. Two
of his favorites are P 6= NP and the Riemann Hypothesis. Of course, by
taking these as new ‘axioms’ we give up on one of the original meanings of
the word ‘axiom’, that it should be ‘self-evident’, but Hilbert already gave
this up by making mathematical deduction into a formal game.

1.8. Stephen Wolfram’s Vision

Another, even more extreme, advocate of Experimental Mathematics, is
guru Stephen Wolfram, whose New Kind of Science and New Kind of Math-
ematics are completely computer-simulation-centric. Let’s dump traditional
equation-centric science and deduction-centric mathematics in favor of do-
ing computer experiments, and watching the output.

1.9. Tweaking Chaitin’s and Wolfram’s Messages: The
Many Shades of Rigor

I admire both Chaitin and Wolfram, but like true visionary prophets, they
see the world as black and white. Since all truths that we humans can
know with old-time certainty are doomed to be trivial (or else we wouldn’t
have been able to prove them completely), and conversely, all the deep
results will never be able to be proved by us completely, with traditional
standards, they advise us to abandon the old ways, and just learn how to
ask our computers good questions, and watch its numerical output, and
gain insight from it.

Things do not have to be so polarized. First, computers can help us find
completely rigorous proofs, that we humans can never find by ourselves, for
example the Four Color Theorem, or the many computer-generated proofs
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of WZ theory. Second, as I first suggested in my Oct. 1993 Notices man-
ifesto, “Theorems for a Price: Tomorrow’s Semi-Rigorous Mathematical
Culture”, one can try and prove things semi-rigorously.

So the great insight of Greg Chaitin and Stephen Wolfram can be fine-
tuned and instead of the “all or nothing” mentality regarding rigor, we can
introduce a whole spectrum of rigor and certainty.

1.10. The Greek Model for Mathematics and Meta-
Mathematics

Meta-mathematics, starting with Frege, continuing through Russell, White-
head and Hilbert, and culminating in Chaitin and others, has been using the
Euclidean model of mathematics, trying to emulate and formalize Euclid’s
paradigmatic Elements. Start with a set of axioms (originally required to
be self-evident but later considered arbitrary) and rules of deduction, and
a notion of formal proof and try to derive all theorems from the axioms.

Alas, Hilbert’s naive dream was shattered by Gödel (and later by Tur-
ing, and beautifully explicated by Chaitin) who (allegedly) proved that:

“There exist true yet unprovable statements”.

Of course, you can meta-prove them, but then there would be new
statements that you could only meta-meta-prove ad infinitum.

1.11. Did Gödel Really Prove That There Exist True yet
Unprovable Statements?

Of course not! All his “statements” were meaningless!
Every statement that starts : “for every integer n ...” or “there exists an

integer n”, is completely meaningless, since it tacitly assumes that there are
infinitely many integers. Of course, there are only finitely many of them,
since our worlds, both the physical and the mathematical, are finite.

More specifically, the meta-statement:

“P has a proof of length ≤ 1000000 characters” does make sense,

and even the meta-statement

“P has a proof of length ≤ googolplex characters” does make sense,

but the “statement”:
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“P is unprovable”

is the same as the following “statement”:

“There does not exist an integer t such that P has a proof of length t

characters”,

and this “statement” is completely meaningless.
Ditto for the Gödel sentence that is “equivalent” to it, that contains

lots of quantifiers.
So, all that Gödel meta-proved was the conditional statement:

If “P is unprovable” makes sense and if the Gödel sentence makes sense,
then there exist true yet unprovable statements.

Gödel, being a devout infinitarian platonist, believed in the premises,
but I, being a finitistic platonist, see Gödel’s proof as a beautiful reductio
proof that all statements that contain quantifiers are a priori meaningless,
and only sometimes can be given an a posteriori meaning, when interpreted
symbolically.

Very often one can deconstruct a seemingly ‘infinitarian’ statement by
restating it symbolically.

The statement “n + n = 2n for every integer n” is meaningless. It is
only true for every finite integer. It is also true for symbolic n.

The statement “every integer has a successor” is meaningless, but one
can say that n + 1 is the symbolic successor of n. Gödel’s ‘true’ yet un-
provable statements are simply statements that may not be resurrected for
symbolic n. A priori, the statement “there are infinitely many twin primes”
makes no sense, and neither does “there are infinitely many primes”. A pos-
teriori the latter can be made to make sense, by showing the validity of the
algorithm implicit in Euclid’s 2300-year-old proof, that manufactures ‘yet
another prime’ (but symbolically!). I am sure that the twin-prime conjec-
ture is also true, since it would turn out to be true for symbolic n. If A(n)
is the number of twin-prime pairs ≤ n, then, some future sieving inequality
(that will be found by computer!), will imply that

A(n) ≥ C1
n

(log n)2
,

for symbolic n, and specific C1, that would contradict the symbolic inequal-
ity A(n) ≤ C2, C2 being a (symbolic!) constant.
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1.12. The Chinese-Indian-Sumerian-Egyptian-Babylonian
Model for Doing Mathematics

Euclid ruined mathematics by introducing that pernicious axiomatic
method and making mathematics deduction-centric. But for thousands of
years before Euclid, mathematics has been pursued empirically and exper-
imentally and was induction-centric. It was what Richard Feynman called
Babylonian-style mathematics. The reason Feynman liked it so much is
that not only was it empirical, but it was also algorithmic.

1.13. Formalizing Algorithms: Turing Machines

Algorithms existed for at least five thousand years, but people did not know
that they were algorithmizing. Then came Turing (and Post and Church
and Markov and others) and formalized the notion. In the case of Turing,
he introduced Turing machines. Of course, given an algorithm, it is nice to
know that it is indeed an algorithm, and not just a Turing machine, in other
words, that it halts. But the question “does T halt” is also meaningless.
On the other hand: “does T halt in ≤ 1000 years” does make sense. So,
by hindsight, just like in Gödel’s case, it is not at all surprising that there
in no decision algorithm for the halting problem. It was a stupid (in fact,
worse, meaningless) question to begin with, and Turing just meta-proved
that it was indeed very stupid to expect such an algorithm, and there is no
way to make sense of it even a posteriori.

1.14. The Problem with the Chaitin-Kolmogorov Definition
of Program-Size Complexity and Randomness

Greg Chaitin, and independently Andrey Kolmogorov and Ray Solomonoff,
famously defined program-size complexity of a (finite or infinite) string as
the length of its shortest description in some fixed description language.
Now, that description language could be taken to be English, French, He-
brew, Spanish, or Chinese. But natural languages are notoriously fuzzy, and
may be good media for love songs, but not for mathematics and computer
science. The lingua-franca of theoretical computer science is the Turing
machine. There are also numerous equivalent models, that are sometimes
easier to work with. But even this is too vague, since we can’t tell, thanks
to Turing, whether our TM would halt or not, in other words whether it
is a genuine algorithm or just an algorithm wannabe. Furthermore, even if
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it does halt, if my super-short computer program would take googolplex to
the power googolplex years to generate my sequence, it can’t do me much
good. It is true that for aesthetic reasons, Greg Chaitin refused to enter
time into his marvelous theory, and he preempted the criticism by the dis-
claimer that his theory is ‘useless for applications’. But, I, for one, being,
in part, a naturalist, find it hard to buy this nonchalance. Life is finite
(alas, way too finite), and it would be nice to reconcile time-complexity
with program-size complexity. Anyway, using Turing machines or any of
the other computational models, for which the halting program is undecid-
able, makes this notion meaningless. Of course it has a great metaphoric
and connotative meaning!.

So the notion of Turing machine-computable is way too general. Besides
the Greek model, adopted by mathematicians and meta-mathematicians
alike does not represent how most of mathematics is done in practice.

Most of mathematics, even logic, is done within narrow computational
frameworks, sometimes explicit, but more often implicit. And what math-
ematicians do is symbol-crunching rather than logical deduction. Of course,
formal logic is just yet another such symbolic-computational framework,
and in principle all proofs can be phrased in that language, but this is
unnatural, inefficient, and worse, sooo boring.

Let’s call these computational frameworks ansatzes. In my humble
opinion, mathematics should abandon the Greek model, and should con-
sciously try to explicate more and more new ansatzes that formerly were
only implicit. Once they are made explicit, one can teach them to our
computers and do much more than any human.

1.15. The Ansatz Ansatz

Indeed, lots of mathematics, as it is actually practiced today, can be placed
within well-defined computational frameworks, that are provably algorith-
mic and, of course, decidable. Sometimes the practitioners are aware of
this, and in that case ‘new’ results are considered routine. For example,
the theorem

198765487 · 198873987 = 39529284877686669 ,

is not very exciting today, since it belongs to the well-known class of ex-
plicit arithmetical identities.

On the other hand, the American Mathematical Monthly still publishes
papers today in Euclidean Geometry, that, thanks to René Descartes, is
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reducible to high-school algebra, that is also routinely provable, of course
in principle, but today also in practice, thanks to our powerful computer
algebra systems.

The fact that multiplication identities are routinely provable is at least
5000-years old, and the fact that theorems in Plane Geometry are routinely-
provable is at least 250-years old (and 40-year old in practice), but the fact
that an identity like

n∑
k=−n

(−1)k

(
2n

n + k

)3

=
(3n)!
n!3

,

discovered, and first proved in 1904 by Dixon, is also routinely provable, is
only about 16-years old, and is part of so-called Wilf-Zeilberger Theory.

In each of these cases it is nowadays routine to prove an identity of the
form A = B, since there is a canonical form algorithm A → c(A), and all
we have to do is check that c(A) = c(B). In fact, to prove that A = B, it
suffices to have a normal-form algorithm, checking that A−B is ‘equivalent’
to 0.

But before we can prove a statement of the form A = B, we have to
find an appropriate ansatz to which they both belong.

At this time of writing, there are only a few explicitly known ansatzes.
Let’s first review one of my favorites.

1.16. The Polynomial Ansatz

David Hume is right that there is no formal, watertight, proof that the sun
will rise tomorrow, since the Boolean-valued function

f(t) := evalb(The Sun Will Rise At Day t) ,

has not yet been proved to belong to any known ansatz. Indeed, we now
know, that for t >> 0, f(t) is false, because the Sun will swallow Planet
Earth, so all we can prove are vague probabilistic statements for small t

(e.g. for t =tomorrow).
The Clay Foundation is also right that there is not yet a formal, wa-

tertight, proof, of the Riemann Hypothesis, even though Andrew Odlyzko
and Herman te Riele proved that the first ten billion, or whatever, complex
zeros of ζ(s) lie on the critical line. This is because the sequence

f(n) := Re(zn) ,

where zn is the nth complex root of ζ(s) = 0, has not yet been proved to
belong to any known ansatz.
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However, the following proof of the lovely identity
n∑

i=1

i3 = (
n∑

i=1

i)2 ,

is perfectly rigorous.
Proof: True for n = 0, 1, 2, 3, 4 (check!), hence true for all n. QED
In order to turn this into a full-fledged proof, all you have to do is

mumble the following incantation:
Both sides are polynomials of degree ≤ 4, hence it is enough to check

the identity at five distinct values.

1.17. An Ansatz-based Chaitin-Kolmogorov Complexity

So let’s define the complexity of an infinite (or finite) sequence always rel-
ative to a given ansatz, assuming that it indeed belongs to it. So our
descriptive language is much more modest, but we can always determine
its complexity, and everything is decidable. It does not have the transcen-
dental beauty and universal insight of Chaitin’s Algorithmic Information
Theory, but on the other hand, we can always decide things, and nothing
is unknowable (at least in principle).

1.18. It all depends on the data structure

Even within a specific ansatz, there are many ways of representing our
objects. For example, since a polynomial P , of degree d is determined
by its values at any d + 1 values, we can represent it in terms of a finite
sequence [P (0), . . . , P (d)] that requires d + 1 “bits” (units of information).
Of course, we can also express it in the usual way, as a linear combination
of the powers {1, n, n2, . . . , nd}, or in terms of any other natural base, for
example {

(
n
k

)
, k = 0 . . . d}. Each of these data structures require d + 1

“bits”, in general, but in specific cases we can sometimes compress in order
to get lower complexity. For example it is much shorter to write n1000 then
to write [0, 1, 21000, . . . , 10001000] (without the “. . . ”, and spelled-out).

1.19. The Strong N0 property

An ansatz has the Strong N0 property, if given any two sequences, A,B,
within that ansatz, in order to prove that A(n) = B(n) (for all n), there
exists an easily computable (say polynomial-time in the maximal size of A
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and B) number N0 = N0(A,B) such that in order to prove that A(n) =
B(n) for all n, it suffices to prove it for any N0 distinct values of n.

The iconic example of an ansatz having the strong N0 property, already
mentioned above, is the set of polynomials. For polynomials P (x) of a single
variable, N0(P (x)) is deg P + 1. For a polynomial P (x1, . . . , xn) of degree
d, N0(P ) is

(
d+n

n

)
.

1.20. The Weak N0 property

An ansatz has the Weak N0 property, if given any two sequences, A,B,
within that ansatz, in order to prove that A(n) = B(n) (for all n), there
exists an easily computable (say polynomial-time in the maximal size of A
and B) number N0 = N0(A,B) such that in order to prove that A(n) =
B(n) for all n, it suffices to prove it for the first N0 values of n: n = 1, n =
2, . . . , n = N0.

A simple example of an ansatz that has the weak, but not the strong,
N0 property, are periodic sequences. If two sequences are known a priori
to have periods d1 and d2, then if they are equal for the first max(d1, d2)
values, then they are identically equal. But the two sequences f(n) := 1
and g(n) := (−1)n coincide at infinitely many places (all the even integers),
yet the two sequences are not identically equal.

1.21. Back to Science: The PEL Model

In Hugh G. Gauch’s excellent book on the Scientific method “Scientific
Method in Practice”, he proposes the PEL model, PEL standing for “Pre-
supposition, Evidence, Logic”. So Hume’s objection disappears if we are
willing to concede that science is theory laden, and we have lots of presup-
positions, both explicit and implicit.

Now the analog of presupposition in mathematics is ansatz. If we make
the reasonable presupposition that the function

f(t) := evalb(The Son Will Rise At Day t) ,

belongs to the constant ansatz (at least for the next 100000 years), then
checking it in just one point, say t = today, proves that the sun will indeed
rise tomorrow.

On the other end, to prove that all emeralds are grue, presupposes that
the color of emeralds belong to the piece-wise constant ansatz, since the
notion of ‘grue’ belongs to it. In that case, N0 > 2050, so indeed checking
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it for many cases but before 2050, does not suffice, even non-rigorously, to
prove that all emeralds are grue.

1.22. The Probabilistic N0 property

Sometimes N0 is way too big, in other words, to get complete certainty will
take too long. Then you might want to consider settling for N0(p).

An ansatz that has the probabilistic N0-property, is one for which, in
order to prove that A ≡ B, with probability p, there exists an easily com-
putable (say polynomial-time in the maximal size of A and B) number
N0(p) = N0(A,B, p) such that in order to prove that A(n) = B(n) for all
n with probability p, it suffices to prove it for any N0(p) randomly chosen
values of n.

The celebrated Schwartz-Zippel theorem establishes that multi-variable
polynomials satisfy the N0(p) property (in addition to having the N0 prop-
erty, of course), and that N0(.9999999) is much smaller than N0(1), so it is
stupid to pay for full certainty.

1.23. An Embarrassing Paper of Mine

Can you envision a professional mathematician publishing a paper entitled
“A bijective proof of 10 × 5 = 2 × 25”, by concocting a nice bijection?
Of course not! Today, all explicit arithmetical identities are known to be
routinely provable.

Yet something analogous happened to me. In my web-journal, I pub-
lished a paper that found an ‘elegant’ combinatorial proof of the identity

2n∑
i=0

(
2n

i

)
F2i = 5nF2n ,

where Fn are the Fibonacci numbers defined by F0 = 0, F1 = 1, Fn =
Fn−1 + Fn−2(n ≥ 2). It was in response to a challenge by Arthur Ben-
jamin and Jennifer Quinn, posed in their delightful books “Proofs that
really count”.

As “elegant” and “insightful” as my proof may have been, in Occam’s
and Chaitin’s sense, the following proof is much more elegant.

Proof: Both sides are sequences that are solutions of second-order lin-
ear recurrence equations with constant coefficients. Hence, to prove that
they coincide for all n ≥ 0, it suffices to check that they coincide for
n = 0, 1, 2, 3. Now just check that indeed
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n = 0 : 1 · 0 = 0 ,

n = 1 : 1 · 0 + 2 · 1 + 1 · 3 = 5 · 1
n = 2 : 1 · 0 + 4 · 1 + 6 · 3 + 4 · 8 + 1 · 21 = 52 · 3,

n = 3 : 1 · 0+6 · 1+15 · 3+20 · 8+15 · 21+6 · 55+1 · 144 = 53 · 8 .

QED
Of course, we have to justify the claims that both sides are solutions

of linear recurrence equations with constant coefficients (by the way, such
sequences are called C-finite), of second order. But these follow from the
following easy claims, that can be proved once and for all, using elementary
linear algebra (you do it!).

Claim 1: If an is a solution of a linear recurrence equation with constant
coefficients of order d, then for any positive integer L

bn := anL ,

is likewise a solution of a (different) linear recurrence equation with constant
coefficients of order d.

Claim 2: If an is a solution of a linear recurrence equation with constant
coefficients of order d, then its binomial transform,

bn :=
n∑

i=0

(
n

i

)
ai ,

is likewise a solution of a (different) linear recurrence equation with constant
coefficients of order d.

Claim 3: if an satisfies such an order-d recurrence, so does knan.
Claim 4: The algebra of C-finite sequences has the weak N0-property,

and two C-finite sequences of order ≤ d are identical if they are identical
for 0 ≤ n ≤ 2d− 1.

For more complicated identities involving C-finite sequences the follow-
ing claim is need.

Claim 5: If an and bn are C-finite sequences of orders d1 and d2, then
an + bn are anbn are C-finite of orders ≤ d1 + d2 and ≤ d1 · d2 respectively.

Since any polynomial sequence is C-finite (a polynomial of degree d

satisfies the recurrence
(N − 1)d+1f(n) = 0, where N is the forward-shift operator), it follows that
the ansatz of C-finite sequences is a superset of the polynomial ansatz. The
next ansatz is even bigger, and contains that of C-finite sequences.
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1.24. The Schützenberger Ansatz

If the generating function of a sequence {a(n)}∞n=0,

φ(x) =
∞∑

n=0

a(n)xn ,

satisfies a polynomial equation:

P (φ(x), x) = 0 ,

then it is called an algebraic formal power series. I call it the Schützenberger
Ansatz, since it was Marco Schützenberger’s favorite ansatz, and has gotten
lots of attention by his illustrious disciple Xavier Viennot and Viennot’s
disciple the brilliant Mireille Bousquet-Mélou, and numerous others at the
école bordelaise.

This is also an algebra, and every identity is decidable, and it, too, has
the weak N0 property.

1.25. Solving Functional Equations Empirically (Yet Rigor-
ously!)

In many combinatorial problems, one is interested in a formal power series
F (x, y; t) that satisfies a functional equation of the form

A(x, y, t)F (x, y; t) + B(x, y, t)F (0, y; t) + C(x, y, t)F (x, 0; t)

+D(x, y, t)F (0, 0; t) = E(x, y, t) , (FunEq)

where A,B,C, D, E are polynomials in (x, y, t). Such an equation can be
used to crank out the Maclaurin expansion of F (x, y; t) to any desired order.

Often, we are really only interested in φ(t) := F (0, 0; t), that sometimes,
surprisingly, happens to satisfy some nice algebraic equation P (t, φ(t)) = 0,
for no apparent reason, and the challenge is to prove that fact. (FunEq)
can’t be used directly, since it involves (x, y, t) not just t, and plugging-in
x = 0, y = 0 in (FunEq) usually yields the fact 0 = 0, that while true, is
far from new, and does not help us with the conjecture at hand.

While we are not guaranteed, a priori, that this is the case, it is still
worthwhile to try to conjecture that not only φ(t) is algebraic, but so is the
full F (x, y; t), i.e. there exists a polynomial Q, Q(F, x, y, t) such that

Q(F (x, y; t), x, y, t) ≡ 0 . (AlgEq)
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This Q can be found, empirically for now, by the method of undetermined
coefficients. Use (FunEq) to crank out the first 1000 or whatever terms
of F , call the truncated version F̃ ; let Q be a generic polynomial of four
variables of a guessed degree d, with undetermined coefficients; ask the
computer to compute Q(F̃ (x, y; t), x, y, t), set the first 1000 terms to 0, get
a huge system of equations for the undetermined coefficients, and solve
them. If there is a non-zero solution, then it is great news! Otherwise,
make d bigger, or give up.

Once we (or rather our computer) conjectured such a general algebraic
equation, how do we prove it rigorously?

We have to prove that (FunEq) implies (AlgEq). By uniqueness, we
can prove that (AlgEq) implies (FunEq). Defining G(x, y; t) to be the
unique solution of

Q(G(x, y; t), x, y, t) ≡ 0 , (AlgEq)

it follows that G(x, 0; t),G(0, y; t),G(0, 0; t) are all algebraic:

Q(G(x, 0; t), x, 0, t) ≡ 0 , (AlgEq′)

Q(G(0, y; t), 0, y, t) ≡ 0 , (AlgEq′′)

Q(G(0, 0; t), 0, 0, t) ≡ 0 . (AlgEq′′′)

Now

H(x, y, t) := A(x, y, t)G(x, y; t) + B(x, y, t)G(0, y; t) + C(x, y, t)G(x, 0; t)

+D(x, y, t)G(0, 0; t)− E(x, y, t)

is also algebraic and using the “Schützenberger calculator” one can find an
equation satisfied by it, and prove that H is identically 0, and by uniqueness,
F = G.

Now plugging-in x = 0, y = 0, into the now-proved algebraic equation
Q(F (x, y, t), x, y, t) = 0, would yield a rigorous proof of the conjectured
algebraic equation for φ(t) = F (0, 0, t), namely Q(φ(t), 0, 0, t) ≡ 0 .

The downside in the above empirical (yet a posteriori rigorous!) ap-
proach, is that the computations required to conjecture Q are very heavy,
and for all but the simplest problems, the above method is beyond today’s
computers. Also, in practice it is more efficient to first conjecture algebraic
equations for F (x, 0; t) and F (0, y; t) and use the “calculator” to derive
what the algebraic equation for the F (x, y; t) should be.

A yet more powerful ansatz, that contains all the preceding ones consid-
ered so far is the Holonomic Ansatz, that is my absolute personal favorite.
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1.26. The Holonomic Ansatz

A sequence {a(n)} is holonomic if it satisfies a linear recurrence equa-
tion with polynomial coefficients. The sum and product of holonomic
sequences is again holonomic, and one has a ‘holonomic calculator’ (The
Salvy-Zimmerman Maple package Gfun).

Introducing the shift operator Nf(n) := f(n + 1), one can define a
holonomic sequence in terms of its annihilating operator P (N,n) and the
initial conditions.

A discrete function of several variables a(n1, . . . , nk) is holonomic if for
each variable ni there is an annihilating operator Pi(n1, . . . , nk ; Ni). This
is the basis for so-called Wilf-Zeilberger theory and it is not only closed
with respect to addition and multiplication, but also with respect to sums.
For example, if F (n, k) is holonomic, then a(n) :=

∑
k F (n, k) is holonomic

as well.

1.27. Functional Equations and Holonomic Functions

Analogous remarks about the interface between functional equations and
algebraic formal power series apply for finding a possible holonomic rep-
resentation for a formal power series given as a solution of a functional
equation.

1.28. In Search of New Ansatzes

The above ansatzes are just some of those known today. I am sure that the
future will bring lots of new ansatzes that will trivialize and routinize large
parts of mathematics.

1.29. Pólya’s Heuristics Applied to Computer Generated
Mathematics

One principle George Pólya was very fond of was “finding the right gen-
eralization”. Suppose that you conjecture that A(n) = B(n) but you can
only prove it for 1 ≤ n ≤ 7, because it takes too much time and space to
verify it for n = 8 and beyond. Of course you can’t generalize from seven
cases! But if you can find two-parameter objects C(m,n) and D(m,n)
such that A(n) = C(n, n) and B(n) = D(n, n), and you can prove that
C(n, m) = D(n, m) for 1 ≤ n ≤ 7, for all m ≥ 0, then the conjecture C=D
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is true for infinitely many cases, so C=D is very plausible, and hence A=B.

1.30. A Very Simple Toy Example

Let A(n) be the number of words in the alphabet {1, 2} with exactly n 1’s
and exactly n 2’s.

By direct enumeration you find that

A(0) = 1 , A(1) = 2 , A(2) = 6 ,

A(3) = 20 , A(5) = 252 , A(6) = 924 ,

and this leads you to conjecture that A(n) = B(n) where B(n) = (2n)!/n!2.
How would you go about proving this conjecture?
Let’s consider the more general problem of finding C(m,n), the num-

ber of words in the alphabet {1, 2} with exactly m 1’s and exactly n 2’s.
Then C(m, 0) = 1, and you have the following recurrence, easily derived by
looking at the number of 2’s to the left of the rightmost 1:

C(m,n) =
n∑

i=0

C(m− 1, i) , (1)

from which you can easily deduce the following special cases:

C(m, 1) =
(

m + 1
1

)
, C(m, 2) =

(
m + 2

2

)
, C(m, 3) =

(
m + 3

3

)
,

that naturally leads to the conjecture C(m,n) = D(m,n), where D(m,n) =(
m+n

n

)
. It can be verified for n ≤ 10 easily by using (1) with specific n but

general m, by only using polynomial summation. Now the more general
statement, C = D, is much more plausible. Besides, this more general
conjecture is much easier to prove, since you have more elbow room, and
it is easy to prove that both X = C and X = D are solutions of the linear
partial recurrence boundary-value problem:

X(m,n) = X(m−1, n)+X(m,n−1) , X(m, 0) = 1 , X(0, n) = 1 .

So in this case finding the right generalization first made our conjecture
much more plausible, and then also made it easy to prove.

1.31. How to do it the hard way

In order for you to appreciate how much trouble could be saved by intro-
ducing a more general conjecture, let’s do it, the hard way, sticking to the
original one-parameter conjecture.
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Let b(n) be the number of words in {1, 2} with exactly n 1’s and with
exactly n 2’s such that in addition , for any proper prefix, the number of
1’s always exceeds the number of 2’s. Analogously, Let b′(n) be the number
of words in {1, 2} with exactly n 1’s and with exactly n 2’s such that in
addition the number of 2’s always exceeds the number of 1’s except at the
beginning and end. By symmetry b(n) = b′(n).

Then we have the non-linear recurrence

a(n) =
n∑

m=0

a(m)(b(n−m) + b′(n−m)) = 2
n∑

m=0

a(m)b(n−m) . (2)

obtained by looking at the longest prefix with the same number of 1’s and
2’s. Also, using a standard combinatorial argument, b(n) can be shown to
satisfy a non-linear recurrence

b(n) =
n−1∑
m=1

b(m)b(n−m) ,

from which you can crank out many values of b(n), that in turn, enable you
to crank out many values of a(n), and make your conjecture much more
plausible. Using the above non-linear recurrence, you can generate the first
few terms of the sequence {b(n)}∞n=1: 1, 1, 2, 5, 14, 42, 132, . . . , and easily
guess that b(n) = (2n−2)!

(n−1)!n! , and to prove it rigorously, all you need is verify
the binomial coefficient identity

(2n− 2)!
(n− 1)!n!

=
n−1∑
m=1

(2m− 2)!
(m− 1)!m!

· (2n− 2m− 2)!
(n−m− 1)!(n−m)!

,

that can be done automatically with the WZ method, and then prove the
identity (

2n

n

)
= 2

n∑
m=0

(
2m

m

)
· (2n− 2m− 2)!
(n−m− 1)!(n−m)!

,

that is likewise WZable.
Note: One can also do it, of course, with generating functions, staying

within the Schützenberger ansatz rather than the holonomic anstaz. But
it is still much harder than doing it via the 2-parameter generalization
discussed above.
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1.32. Pólya’s Ode to Incomplete Induction

In Polya’s masterpiece on the art of mathematical discovery, “Induction
and Analogy in Mathematics” he lauded the use of incomplete induc-
tion as a powerful heuristics for discovering mathematical conjectures, and
as a tool for discovering possible proofs. In particular he cites approvingly
the great Euler who conjectured, long before he had a formal proof, many
interesting results. For example:

∞∑
n=1

1
n2

=
π2

6
,

that he verified numerically to six decimal places, noting that this implies
that the probability that the left side and right hand side coincide by ac-
cident is less than one in a million. Many years later he found a complete
proof, but he first had a “cheating proof” that proceeded by pretending
that infinite products are like polynomials. Another notable example was
the pentagonal number theorem, that he conjectured, and deduced impor-
tant consequences from, based on expanding it to eighty terms. Only 25
years did he find a formal proof.

Undoubtedly, the greatest conjecturer of all time was Srinivasa Ramanu-
jan, who only needed very few special cases to formulate a conjecture, and
was very seldom wrong.

1.33. The Law of Small Numbers

The conventional wisdom against the use of incomplete induction is called
the law of small numbers, and there are many cases, many of them col-
lected by Richard Guy in his two Monthly papers about that “Law”, that
should be cautionary tales against having insufficient data and “jumping
to conclusions”.

We all know the joke about the mathematician, physicist, and engineer,
the mathematician saying “1 is a prime, 3 is a prime, 5 is a prime, 7 is a
prime”, hence all odd numbers are primes.

Deeper victims of the law of small numbers were Margie Readdy and
Richard Ehrenborg who conjectured that the number of up-down invo-
lutions of length 2k is k!, based on data for k = 1, 2, 3, 4, 5. This was
disproved, by Shalosh B. Ekhad, for k = 6 (and beyond). Later Richard
Stanley explained why the sequence starts out like that.
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Sometimes even 9 terms do not suffice. Neil Sloane, the great master-
sequencer, pointed my attention to sequences A0060041 and A076912,
in his legendary database, that are known to be equal up to n = 9, but
are believed to disagree for n = 10.

But the greatest source of such horror stories is number theory.
We all know how the great Fermat goofed when he conjectured that

22n

+ 1 is always prime, based on the five cases n = 0, 1, 2, 3, 4.
Another scary story involves a stronger version of the Riemann Hypoth-

esis, due to Mertens. Recall that the Riemann Hypothesis is equivalent to
the statement that the partial sums of the Möbius function:

M(n) :=
n∑

i=1

µ(i) ,

satisfy

|M(n)| ≤ C(ε)n1/2+ε .

Mertens, in 1897, conjectured the stronger conjecture that |M(n)| ≤ n1/2,
and it was verified for n up to a very large number. Yet in 1985, Andrew
Odlyzko and Herman te Riele disproved it.

Another notorious example concerns the Skewes Number, that is the
smallest n for which π(n), the number of prime numbers ≤ n is larger than
li(n), the logarithmic integral. No one knows its exact value, but it seems
to be very large.

1.34. Inequalities vs. Equalities

By hindsight, it is not surprising that both π(n) < li(n) and |M(n)| <
√

n

turned out to be false, even though they are true for so many values of n.
First, prime numbers are very hazardous, and since often we have log log
and log log log showing up, it is reasonable to suspect that what seems large
for us is really peanuts. But a better reason to distrust the ample empirical
evidence is that inequalities need much more evidence than equalities.

A trivial example is the following. To prove that P (x) = 0 for a poly-
nomial P of degree ≤ d (say given in some complicated way that is not
obviously 0, for example (x4 + 1)(x + 1) − x5 − x4 − x − 1) it suffices to
check d + 1 special cases, but consider the “conjecture”

x

10000000000000
− 1 < 0 .
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The left side is a polynomial of degree 1 in x, and the “conjecture” is true
for the first 10000000000000 integer values of x, yet, of course, it is false in
general.

1.35. The Art of Plausible Reasoning

Given a conjecture P (n), depending on an integer parameter n, that has
been verified for 1 ≤ n ≤ M , how plausible is it?

If it has the form A(n) ≤ B(n), then no matter how big M , it would be
very stupid to jump to conclusions, see the above examples.

From now we will assume that it can naturally be phrased in the form
A(n) = B(n). Granted, every assertion P (n), even an inequality like
“|M(n)| <

√
n”, is logically equivalent to an equality :

evalb(P (n)) ≡ true ,

where evalb(p) is true or false according to whether p is true or false. But
of course this is contrived.

The most secure scenario is when both A and B are known to belong to
a decidable ansatz with the strong or weak N0 property, and it is easy to
compute N0, and it so happened that M ≥ N0. Then we immediately have
a rigorous proof.

Next in line is when A and B both belong to an ansatz with the N0(p)
property and M ≥ N0(.999999) or whatever.

Next in line, as far as plausibility goes, is when there is a strong heuristic
evidence, inspired by analogy and past experience, that both A and B

belong to a known ansatz with an N0 property, M is fairly large, and both
A and B are not too complicated.

After that, in the certainty pecking-order, are cases where you have no
ansatz in mind to which A and B may possibly belong to, but you can feel it
in your bones that there is a yet to be discovered ansatz that would have the
N0 property, and M is fairly large and A and B are not too complicated.

Finally, if the conjecture is so far-out or artificial, or A and B are so
different, so that you have no reason to hope that there is a yet-to-be-
discovered ansatz that would ‘trivialize’ A = B, and M is not that big,
then I wouldn’t even make a conjecture.

Also keep in mind the above remarks of finding the right generalization
from a one-parameter identity to a multiple-parameter one, that not only
can add plausibility to our conjecture, by verifying it for infinitely many
cases, but often also facilitates a formal proof.
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1.36. Don’t Get Hung-Up on the N0-approach

In my eyes, an N0 proof is the most elegant. It is also the most fun, since it
defies that old and corny platitude, we mathematicians grew up with, that

“checking finitely many cases, no matter how many, does not
constitute a proof”.

But often the N0 is way too big, and it may not be the most efficient
way to prove identities. For example, for the identity

(n10000000 − 1)(n10000000 + 1) = n20000000 − 1 ,

it would be stupid to verify it for 1 ≤ n ≤ 20000001. Just use the “usual”
algorithm for multiplying polynomials.

After all the N0 approach is just one algorithm for proving identities
within a given ansatz, and not necessarily always the most efficient one.

1.37. The Wilf-Zeilberger Algorithmic Proof Theory

A less trivial example of an ansatz that has the N0 property, but using it
is usually not feasible, is the WZ algorithmic proof theory, that can prove
any conjectured identity of the form

n∑
k=0

F (n, k) =
n∑

k=0

G(n, k) ,

whenever F (n, k) and G(n, k) are products of binomial coefficients. By
general nonsense we know that the sequence

a(n) :=
n∑

k=0

F (n, k)−
n∑

k=0

G(n, k) ,

is holonomic, i.e. satisfies a homogeneous linear recurrence equation with
polynomial coefficients:

L∑
i=0

pi(n)a(n + i) ≡ 0 ,

for some non-negative integer L and some polynomials p0(n), . . . , pL(n). It
is fairly easy to find relatively small a priori upper bounds for L, without
actually finding the recurrence. If we knew beforehand that the leading
coefficient, pL(n), has no positive integer zeros, then we could immediately
deduce that a(n) is identically 0 once it vanishes for 0 ≤ n < L. Lily Yen,
in a 1993 Ph.D. thesis, written under the direction of Herb Wilf, found a
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priori bounds for the largest positive integer root of pL(n) = 0, but they
were enormous. It is possible that another approach could bring it down,
but why bother? Yen’s thesis was interesting theoretically, since it showed
that WZ theory has the (weak) N0 property, but as far as actually proving
specific identities, it is much more efficient to use the Zeilberger algorithm
to actually manufacture the recurrence, and then just look at pL(n) and
convince ourselves that it has no positive integer roots, and if it does find
it.

1.38. What is Mathematical Knowledge?; Reliablism

The standard definition of knowledge (see, e.g., Kwame Anthony Ap-
piah’s excellent introduction to contemporary philosophy, “Thinking it
Through”) is:

“justified true belief”.

The problem is then “how justified is justified”. In science one is willing
to take ample empirical evidence as sufficient justification, but in math-
ematics, traditionally, one insisted on a formal rigorous proof, proved by
human means, since a “proof by computer is only a physical experiment”,
and “you can’t trust a computer”, since programs have so many bugs.

Appiah talks about a movement in contemporary epistemology, co-
pioneered by my Rutgers colleague Alvin Goldman, called reliablism (see
also the Wiki entry), that modifies the definition of knowledge to be true
belief justified reliably. The problem then is to introduce reliability
standards.

I strongly believed that very soon most of serious mathematics will be
computer-generated, and all of it computer-assisted, so we do need to de-
velop quality-control to maximize the chances that the computer-generated
proofs are indeed valid.

One way to maximize reliability is to adopt what I call the method of
overlapping steps.

Suppose that you have to devise an algorithm to do S(n), n = 0, 1, 2, . . . ,
and you want to do it for as large n as possible. You should first write the
most naive program, easy to write, and easy to check. Then let the
computer output S(0), S(1), . . . , S(L0), with L0 rather small.

Unfortunately, the naive approach can’t go very far. So you write a
more sophisticated program, good for n ≤ L1, and compare its output with
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the output of the previous program for n ≤ L0. Then you write yet another,
even more sophisticated program, valid for n ≤ L2 and check it against the
previous ones, and so on and so forth.

It can also help if you have two entirely different approaches to tackle
the same problem, and if the outputs match, then it is a great indication
that they are both indeed correct.

There are hardly any isolated facts. As already noticed by Quine, all
knowledge, in particular science and mathematics, consist of intricate webs.
In the case of computer-generated mathematics, if all your programs are
working together without contradiction, this fact simultaneously testifies
that they are all OK. It is a little like the way computer scientists generate
random bits at a fraction of the normal cost by using expanders.

1.39. How Necessary is Necessary and How Contingent is
Contingent

Many of the traditional philosophical dichotomies like analytic/synthetic,
a priori/a posteriori, induction/deduction, and especially neces-
sary/contingent collapse once we realize that the mathematical universe
is the same as the physical universe, and that our unique universe is
finite. Also that everything is computation.

I will only dwell on the necessary/contingent dichotomy.
According to traditional thinking, the fact that the speed of light is

constant is contingent, while the fact that the 100th (decimal) digit of π is
9 is necessary. Nonsense. They are both necessary and both contingent.
As Greg Chaitin said so beautifully about the digits of Ω, “they are true
for no particular reason”. But, even if you don’t believe in Ω, lots of
mathematical facts are, in some sense, contingent, and lots of efforts goes
into explaining identities of the form A=B by trying to explain them.

Alas, paraphrasing Greg, if the “explanation” is longer than the ex-
planandum, then it is not much of an explanation.

So, the statement

“Amongst any eleven consecutive digits of π, two must be the same”

is much more necessary than the statement

“the 100th digit of π is 9” ,

since the former is a special case of a universal result called the pigeon-
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hole principle, with two parameters m and n:

P (m,n): If m > n and m pigeons much be placed in n pigeon-holes,
then at least two pigeons must be pigeon-hole-mates.

So a numeric result a = b, with a and b both numbers (in other words,
they depend on zero parameters), is contingent, even if you have a formal
proof. It is less contingent if it is a special case of A(n) = B(n) with n = n0.
It is even less contingent if it is a special case of A(m,n) = B(m,n) with
m = m0, n = n0, and so on.

1.40. Depth vs. Elegance

The depth of a mathematical result is the smallest amount of computer-
time it takes to prove it (within our ansatz). The elegance of a statement
is how short is its statements.

Paul Erdös believed that God has a book with elegant (i.e. short) proofs
of all theorems. I hope that he is wrong. Theorems with short proofs are
shallow, and my favorite results are short statements that require long
proofs.

1.41. Towards a New Kind of Mathematical Aesthetics

Truth is Beauty and Beauty is Truth, or so goes the Keatsian cliche. If
Beauty is elegance, symmetry, and shortness, then Beauty is just trivial
Truth. But if you care about deep truth, then you have to give up on the
traditional standards of beauty.

1.42. Why is the Computer-Generated Proof of the Four
Color Theorem so Beautiful in my Eyes?

Because the idea of the proof can be encapsulated in one short phrase:
There exists an unavoidable set of reducible configurations.
The rest are just details on how to teach the computer how to construct

such a set, and verify that it is indeed what we want.
In this case, a major open problem was reduced to finding one object,

that can, and indeed was, searched for, and found, by computer. That one,
specific, object certified that the statement of the Four Color Theorem was
indeed true.
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A proof of an identity in WZ theory also consists in displaying one,
finite, object, the WZ certificate, that certifies its correctness. Thereby,
apparently, proving “infinitely many cases”. Of course, these ‘infinitely’
many numerical facts are just trivial consequences of just one symbolic
fact.

1.43. Towards an Ansatz Based Mathematics and Meta-
Mathematics

All thinking requires logic, but the informal logic of normal mathemati-
cal discourse is good enough. The reductionist attempt of logicism and
formalism to reduce mathematics, at least in principle, to formal logic
was unfortunate, even for human-generated mathematics, but especially
for computer-generated mathematics. I believe that the logic-based ap-
proach that predominates automatic theorem proving is not entirely
satisfactory.

Also the “abstract nonsense”, structuralist, approach, as preached by
Bourbaki, was not quite the right approach for humans, and is definitely not
suited for computers. Hopefully, the future will bring some synthesis, but,
at present, one should try to base mathematical research on ansatzes. Major
breakthroughs will come not by solving specific open problems, and not even
devising new human theories, but by finding new and powerful ansatzes
where the open problems can be embedded. It is much more efficient to
solve geometry problems using algebra, by using analytics geometry, rather
than by logic, using synthetic geometry.

The traditional dichotomy between numerical, empirical, facts, and
general, theoretical results, is only illusionary. In the eyes of God, 2+2 = 4
is just as interesting as Fermat’s Last Theorem. It is true that “2 + 2 = 4”
has zero free parameters, while FLT has four [P (a, b, c, n) := an+bn−cn 6= 0
( if n > 2, abc 6= 0)], but this is a quantitative difference not a qualitative
one.

Traditionally (n + 1)(n− 1) = n2 − 1 is a “theorem”, true for infinitely
many n, while 3 · 5 = 42− 1 is just one fact. However, viewed symbolically,
they are both facts, the former with one parameter, and the latter with
zero parameters.

To prove that 15 is not prime, all you have to do is come up with a
factorization: 3 · 5 = 15. For large numbers, this is considered a difficult
computational problem, but “conceptually” it is trivial, or so the conven-
tional wisdom says.
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To prove that
n∑

k=−n

(−1)k

(
2n

n + k

)3

=
(3n)!
n!3

,

requires a proof, since this is a general statement, valid for all n, but thanks
to WZ theory, there is just one object, a certain rational function R(n, k),
that certifies it. That certificate can be obtained empirically and algorith-
mically. So the ‘proof’ is just one object, like the pair (3, 5) in the case of
the ‘theorem’ that 15 is composite.

If desired, it is always possible to convert a ‘certificate proof’ to a formal
logic proof, but this is very artificial, and unnecessary.

Let’s conclude this manifesto with:

Mathematicians and meta-mathematicians of the world unite,
you have nothing to lose but your logic chains! Let’s work
together to develop an ansatz-based mathematics and meta-
mathematics.


