## 1. Super-Conjecture 1

Super-Conjecture 1.1. Let $p \geq 5$ be a prime, and

$$
A=\sum_{n=0}^{p-1}\binom{2 n}{n}
$$

Then

$$
\begin{aligned}
& A \equiv 1 \quad \bmod p^{2} \text { if } p \equiv 1 \quad \bmod 3 \\
& A \equiv-1 \quad \bmod p^{2} \text { if } p \equiv 2 \quad \bmod 3
\end{aligned}
$$

Proof. Already from the paper we know

$$
A=C T \frac{(1+x)^{2 p}}{x^{p-1}\left(1+x+x^{2}\right)}=C T \frac{(1-x)(1+x)^{2 p}}{x^{p-1}\left(1-x^{3}\right)}
$$

So

$$
\begin{equation*}
A=\sum_{k \geq 0}\left(\binom{2 p}{p-1-3 k}-\binom{2 p}{p-2-3 k}\right) \tag{1}
\end{equation*}
$$

CASE $1 p \equiv 1 \bmod 3$. In this case, the $k=(p-1) / 3$ term in (1) is 1 , and all of the other terms are divisible by $p$,

$$
A=1+p B
$$

where

$$
B=\frac{1}{p} \sum_{0 \leq k<(p-1) / 3}\left(\binom{2 p}{p-1-3 k}-\binom{2 p}{p-2-3 k}\right) .
$$

We'll show that the integer $B$ satsifies $B \equiv 0 \bmod p$, so that $A \equiv 1 \bmod p^{2}$.
Since

$$
\begin{aligned}
& \frac{1}{p}\binom{2 p}{p-1-3 k} \equiv 2 \frac{(p-1)!}{(p-1-3 k)!(3 k+1)!} \quad \bmod p \\
& \frac{1}{p}\binom{2 p}{p-2-3 k} \equiv 2 \frac{(p-1)!}{(p-2-3 k)!(3 k+2)!} \quad \bmod p
\end{aligned}
$$

we see that

$$
B \equiv 2 \sum_{0 \leq k<(p-1) / 3}\left(\frac{(p-1)!}{(p-1-3 k)!(3 k+1)!}-\frac{(p-1)!}{(p-2-3 k)!(3 k+2)!}\right) \quad \bmod p
$$

However, by trisecting the binomial theorem this sum of integers is 0

$$
\sum_{0 \leq k<(p-1) / 3}\left(\frac{(p-1)!}{(p-1-3 k)!(3 k+1)!}-\frac{(p-1)!}{(p-2-3 k)!(3 k+2)!}\right)=0
$$

so

$$
B \equiv 0 \quad \bmod p
$$

CASE $2 p \equiv 2 \bmod 3$. In this case the second term with $k=(p-2) / 3$ gives -1 . We proceed as in CASE 1, the trisection identity we need is

$$
\sum_{0 \leq k \leq(p-2) / 3} \frac{(p-1)!}{(p-1-3 k)!(3 k+1)!}-\sum_{0 \leq k \leq(p-5) / 3} \frac{(p-1)!}{(p-2-3 k)!(3 k+2)!}=0
$$

## 2. Super-Conjecture 1"

Super-Conjecture 2.1. Let $p \geq 5$ be a prime, $r$ be a positive integer, and

$$
A=\sum_{n=0}^{r p-1}\binom{2 n}{n} .
$$

Then

$$
\begin{aligned}
& A \equiv \alpha_{r} \quad \bmod p^{2} \text { if } p \equiv 1 \quad \bmod 3 \\
& A \equiv-\alpha_{r} \quad \bmod p^{2} \text { if } p \equiv 2 \quad \bmod 3
\end{aligned}
$$

where

$$
\alpha_{r}=\sum_{n=0}^{r-1}\binom{2 n}{n} .
$$

Proof. (sketch, assuming a fact (3) you probably know, if true) This time

$$
A=C T \frac{(1+x)^{2 r p}}{x^{r p-1}\left(1+x+x^{2}\right)}=C T \frac{(1-x)(1+x)^{2 r p}}{x^{r p-1}\left(1-x^{3}\right)}
$$

So

$$
\begin{equation*}
A=\sum_{k \geq 0}\left(\binom{2 r p}{r p-1-3 k}-\binom{2 r p}{p r-2-3 k}\right) \tag{2}
\end{equation*}
$$

As before, we separate the terms which have a $p$ for sure, namely those whose binomial denominator is not a multiple of $p$ from those whose binomial denominator is a multiple of $p$. The non-multiples of $p$ will sum to 0 as before, and we are left with the extra terms.

CASE $1 p \equiv 1 \bmod 3$. Here the terms with denominator parameter a multiple of $p$ are

$$
E X T R A=\sum_{j \geq 0}\left(\binom{2 r p}{(r-1-3 j) p}-\binom{2 r p}{(r-2-3 j) p}\right) .
$$

Assuming

$$
\begin{equation*}
\binom{D p}{E p} \equiv\binom{D}{E} \quad \bmod p^{2} \tag{3}
\end{equation*}
$$

then

$$
E X T R A \equiv \sum_{j \geq 0}\left(\binom{2 r}{r-1-3 j}-\binom{2 r}{r-2-3 j}\right)=\alpha_{r} \quad \bmod p^{2}
$$

by (1), which works for any positive integer $p$.

CASE $2 p \equiv 2 \bmod 3$. Here the terms with denominator parameter being a multiple of $p$ are

$$
E X T R A=\sum_{j \geq 0}\left(\binom{2 r p}{(r-2-3 j) p}-\binom{2 r p}{(r-1-3 j) p}\right) .
$$

then

$$
E X T R A \equiv \sum_{j \geq 0}\left(\binom{2 r}{r-2-3 j}-\binom{2 r}{r-1-3 j}\right)=-\alpha_{r} \quad \bmod p^{2}
$$

again by (1).

School of Mathematics, University of Minnesota, Minneapolis, MN 55455
E-mail address: stanton@math.umn.edu

