Using GENERATINGFUNCTIONOLOGY to Enumerate Distinct-Multiplicity Partitions

Doron ZEILBERGER

In fond memory of Guru Herbert Saul WILF (28 Sivan 5691-12 Tevet 5772) zecher gaon l'bracha

Preamble

About a year ago, Herb Wilf[W1] posed, on-line, eight intriguing problems. I don't know the answer to any of them, but I will say something about the sixth question.

Herb Wilf's 6th Question: Let $T(n)$ be the set of partitions of n for which the (nonzero) multiplicities of its parts are all different, and write $f(n)=|T(n)|$. See Sloane's sequence A098859 for a table of values. Find any interesting theorems about $f(n) \ldots$

First, I will explain how to compute the first few terms of $f(n)$. Shalosh can easily get the first 250 terms, but as n gets larger it gets harder and harder to compute, unlike its unrestricted cousin, $p(n)$. I conjecture that the fastest algorithm takes exponential time, but I have no idea how to prove that claim. I am impressed that, according to Sloane, Maciej Ireneusz Wilczynsk computed 508 terms.

Recall that the generating function for the number of integer partitions of n whose largest part is $\leq m, p_{m}(n)$, is the very simple rational function

$$
\sum_{n=0}^{\infty} p_{m}(n) q^{n}=\frac{1}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{m}\right)}
$$

The main purpose of this note is to describe, using Generatingfunctionology, so vividly and lucidly preached in W's classic book [W2], how to compute the generating function (that also turns out to be rational) for the number of partitions of n whose largest part is $\leq m$ and all its (nonzero) multiplicities are distinct, let's call it $f_{m}(n)$. As m gets larger, the formulas get more and more complicated, but we sure do have an answer, in the sense of the classic article [W3], for any fixed m, but of course not for a symbolic m.

Even more is true! Because, like $\frac{1}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{m}\right)}$, the generating function of $f_{m}(n), \sum_{n=0}^{\infty} f_{m}(n) q^{n}$, turns out (as we will see) to only have roots-of-unity poles, whose highest order is m, it follows

[^0]that $f_{m}(n)$ is a quasi-polynomial of degree $m-1$ in n. Now that's a very good answer! (in W's sense, albeit only for a fixed m).

How to Compute Many terms of $f(n)$?
$p_{m}(n)$ is very easy to compute. For example, one may use the recurrence

$$
p_{m}(n)=p_{m-1}(n)+\sum_{i=1}^{\lfloor n / m\rfloor} p_{m-1}(n-m i)
$$

together with the initial condition $p_{1}(n)=1, p_{m}(0)=1$.
How can we adapt this in order to compute $f_{m}(n)$? The contribution from the partitions counted by $f_{m}(n)$ where m does not show up is $f_{m-1}(n)$, in analogy with the $p_{m-1}(n)$ term in the above recurrence. But if m does show up, it does so with a certain multiplicity, i, say, where $1 \leq i \leq$ $\lfloor n / m\rfloor$, and removing these i copies of m results in a partition counted by $f_{m-1}(n-m i)$-so all its multiplicities are different- and in addition none of these multiplicities may be i. Continuing, we are forced to introduce a much more general discrete function $f_{m}(n ; S)$ whose arguments are m and n and a set of "forbidden multiplicities", S.

So let's define $f_{m}(n ; S)$ to be the number of partitions of n with parts $\leq m$, with all its multiplicities distinct and none of these multiplicities belonging to S. Our intermediate object of desire, $f_{m}(n)$, is simply $f_{m}(n ; \emptyset)$, and the ultimate object, $f(n)$, is $f_{n}(n ; \emptyset)$.

The recurrence for $f_{m}(n ; S)$ is, naturally,

$$
f_{m}(n ; S)=f_{m-1}(n ; S)+\sum_{i=1, i \notin S}^{\lfloor n / m\rfloor} f_{m-1}(n-i m ; S \cup\{i\})
$$

because once we decided on the number of times m shows up, let's call it i, where i is between 1 and $\lfloor m / m\rfloor$ and $i \notin S$, the partition (of $n-m i$) obtained by removing these i copies of m must forbid the set of multiplicities $S \cup\{i\}$.

In the Maple package DMP, procedure $\mathrm{qnmS}(\mathrm{n}, \mathrm{m}, \mathrm{S})$ implements $f_{m}(n ; S)$ and procedure $\mathrm{qn}(\mathrm{n})$ implements $f(n)$.

Inclusion-Exclusion

Let $\mathcal{P}_{m}(n)$ be the set of partitions of n whose parts are all $\leq m$, in other words, the set that $p_{m}(n)$ is counting. Consider the set of all partitions whose largest part is $\leq m$, where we write a partition in frequency notation:

$$
\mathcal{P}_{m}:=\left\{1^{a_{1}} 2^{a_{2}} \ldots m^{a_{m}} \mid a_{1}, \ldots, a_{m} \geq 0\right\}
$$

For example $1^{3} 2^{5} 4^{2}$ is the partition of twenty-one usually written as 4422222111. Introducing symbols $x_{1}, x_{2}, \ldots, x_{m}$, we define the Weight of a partition to be

$$
W e i g h t\left(1^{a_{1}} 2^{a_{2}} \ldots m^{a_{m}}\right):=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{m}^{a_{m}}
$$

The weight-enumerator of \mathcal{P}_{m} is, by ordinary-generatingfunctionology

$$
W \operatorname{eight}\left(\mathcal{P}_{m}\right)=\frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right) \cdots\left(1-x_{m}\right)}
$$

since we make m independent decisions:

- how many copies of 1 ? (Weight enumerator $\left.=1+x_{1}+x_{1}^{2}+\ldots=\left(1-x_{1}\right)^{-1}\right)$,
- how many copies of 2 ? (Weight enumerator $=1+x_{2}+x_{2}^{2}+\ldots=\left(1-x_{2}\right)^{-1}$),
- how many copies of m ? (Weight enumerator $\left.=1+x_{m}+x_{m}^{2}+\ldots=\left(1-x_{m}\right)^{-1}\right)$.

But we want to find the weight-enumerator of the much-harder-to-weight-count set

$$
\mathcal{F}_{m}:=\left\{1^{a_{1}} 2^{a_{2}} \ldots m^{a_{m}} \mid a_{1}, \ldots, a_{m} \geq 0 ; a_{i} \neq a_{j}\left(\text { if } \quad a_{i}>0, a_{j}>0\right)\right\}
$$

Calling the members of \mathcal{F}_{m} good, we see that a member of \mathcal{P}_{m} is good if it does not belong to any of the following $\binom{m}{2}$ sets, $S_{i j} 1 \leq i<j \leq m$:

$$
S_{i j}:=\left\{1^{a_{1}} 2^{a_{2}} \ldots m^{a_{m}} \in \mathcal{P}_{m} \mid a_{i}=a_{j}>0\right\}
$$

By inclusion-exclusion, the weight-enumerator of \mathcal{F}_{m} is

$$
\sum_{G}(-1)^{|G|} W e i g h t\left(\cap_{i j \in G} S_{i j}\right)
$$

where the summation ranges over all $2^{m(m-1) / 2}$ subsets of $\{(i, j) \mid 1 \leq i<j \leq m\}$.
But the G 's can be naturally viewed as labeled graphs on m vertices. Such a graph has several connected components, and together they naturally induce a set partition $\left\{C_{1}, C_{2}, \ldots, C_{r}\right\}$ of $\{1,2, \ldots, m\}$. We have:

$$
W e i g h t\left(\underset{i j \in G}{\cap} S_{i j}\right)=\prod_{i=1}^{r} \operatorname{weight}\left(C_{i}\right)
$$

where if $|S|=1, S=\{s\}$, say, then weight $(S)=\frac{1}{1-x_{s}}$, and if $|S|=d>1, S=\left\{s_{1}, s_{2}, \ldots s_{d}\right\}$, say, then

$$
\text { weight }(S)=\frac{x_{s_{1}} x_{s_{2}} \cdots x_{s_{d}}}{1-x_{s_{1}} x_{s_{2}} \cdots x_{s_{d}}} .
$$

To justify the latter, note that if vertices $s_{1}, s_{2}, \ldots s_{d}$ all belong to the same connected component of our graph then, by transitivity, we have that all $a_{s_{1}}=a_{s_{2}}=\ldots=\ldots a_{s_{d}}>0$, and the weightenumerator is the infinite geometric series

$$
\sum_{\alpha=1}^{\infty}\left(x_{s_{1}} \cdots x_{s_{d}}\right)^{\alpha}=\frac{x_{s_{1}} x_{s_{2}} \cdots x_{s_{d}}}{1-x_{s_{1}} x_{s_{2}} \cdots x_{s_{d}}}
$$

But quite a few graphs correspond to any one set-partition. To find out the coefficients in front, for any set-partition $\left\{C_{1}, C_{2}, \ldots, C_{r}\right\}$ of $\{1, \ldots, m\}$ we must find

$$
\sum_{G}(-1)^{|G|}
$$

summed over all the graphs that gives rise to the above set partition. But this is the product of the analogous sums where one focuses on one connected component at a time, and then multiplies everything together.

Let's digress and figure out $\sum_{G}(-1)^{|G|}$ over all connected labeled graphs on n vertices. For the sake of clarity, let's, more generally, figure out $\sum_{G} y^{|G|}$ with a general variable y.

By exponential-generatingfunctionology[W2] (see also $[\mathrm{Z}]$), this sum is nothing but the coefficient of $t^{n} / n!$ in

$$
\log \left(\sum_{i=0}^{\infty}(1+y)^{\binom{i}{2}} \frac{t^{i}}{i!}\right)
$$

Going back to $y=-1$, we see that we need the coefficient of t^{n} / n ! in

$$
\begin{gathered}
\log \left(\sum_{i=0}^{\infty}(1+(-1))^{\binom{i}{2}} \frac{t^{i}}{i!}\right)=\log \left(\sum_{i=0}^{\infty} 0\left(\begin{array}{c}
\binom{2}{2} \\
i! \\
i!
\end{array}\right)=\log (1+t)\right. \\
\quad=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{t^{n}}{n}=\sum_{n=1}^{\infty}(-1)^{n-1}(n-1)!\frac{t^{n}}{n!}
\end{gathered}
$$

So the desired sum is $(-1)^{n-1}(n-1)$!.
Let's define for any set of positive integers, S,
$\operatorname{mishkal}(S)= \begin{cases}1 /\left(1-x_{s}\right), & \text { if }|S|=1 \text { where } S=\{s\} ; \\ (-1)^{d-1}(d-1)!\left(x_{s_{1}} \cdots x_{s_{d}}\right) /\left(1-x_{s_{1}} \cdots x_{s_{d}}\right), & \text { if }|S|=d>1 \text { where } S=\left\{s_{1}, \ldots s_{d}\right\} .\end{cases}$

For any set partition $C=\left\{C_{1}, \ldots, C_{r}\right\}$ let's define

$$
\operatorname{Mishkal}(C)=\operatorname{mishkal}\left(C_{1}\right) \cdots \operatorname{mishkal}\left(C_{r}\right)
$$

It follows that the weight-enumerator of \mathcal{F}_{m} according to $W e i g h t\left(1^{a_{1}} 2^{a_{2}} \ldots m^{a_{m}}\right):=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{m}^{a_{m}}$ is

$$
\sum_{C} \operatorname{Mishkal}(C)
$$

where the sum has B_{m} terms (B_{m} being the Bell numbers), one for each set-partition of $\{1, \ldots, m\}$.
Finally, to get an "explicit" formula (as a sum of B_{m} terms, each a simple rational function of q), for the generating function $\sum_{n=0}^{\infty} f_{m}(n) q^{n}$, all we need is replace x_{i} by q^{i}, for $i=1 \ldots m$, getting

$$
\sum_{n=0}^{\infty} f_{m}(n) q^{n}=\sum_{C} \operatorname{Poids}(C)
$$

where for a set partition $C=\left\{C_{1}, \ldots, C_{r}\right\}$

$$
\operatorname{Poids}(C)=\operatorname{poids}\left(C_{1}\right) \cdots \operatorname{poids}\left(C_{r}\right),
$$

and where for an individual set S :
$\operatorname{poids}(S)= \begin{cases}1 /\left(1-q^{s}\right), & \text { if }|S|=1 \text { where } S=\{s\} ; \\ (-1)^{d-1}(d-1)!q^{s_{1}+\ldots+s_{d}} /\left(1-q^{s_{1}+\ldots+s_{d}}\right), & \text { if }|S|=d>1 \text { where } S=\left\{s_{1}, \ldots s_{d}\right\} .\end{cases}$
It follows that indeed $f_{m}(n)$ is a quasi-polynomial of degree $m-1$ in n. Furthermore, since the only pole that has multiplicity m is $q=1$, it follows that the leading term (of degree $m-1$) is a pure polynomial.

The generating function, $\sum_{n=0}^{\infty} f_{m}(n) q^{n}$, for any desired positive integer m, is implemented in procedure GFmq (m,q) in the Maple package DMP. For the Weight-enumerator (or rather with x_{i} replaced by $q^{i} x_{i}$, for $i=1, \ldots, m$), see $\operatorname{GFmxq}(\mathrm{m}, \mathrm{x}, \mathrm{q})$. Since the Bell numbers grow very fast, the formulas get complicated rather fast, but in principle we do have a very nice answer for any specific m, but in practice, for large m it is only "nice" in principle. Of course it is anything but nice when viewed also as function of m, and that's why $f(n)=f_{n}(n)$ is probably very hard to compute for larger n.

To see the outputs of $\operatorname{GFmq}(\mathrm{m}, \mathrm{q})$ for $1 \leq \mathrm{m} \leq 8$ see:
http://www.math.rutgers.edu/~zeilberg/tokhniot/oDMP3

Asymptotics

Recall that Hardy and Ramanujan tell us that as n goes to infinity, $p(n)$ is asymptotic to $\frac{1}{4 n \sqrt{3}} \exp (C \sqrt{n})$ where $C=\sqrt{2 / 3} \pi=2.565099661 \ldots$, and hence $\log p(n) / \sqrt{n}$ converges to C. By looking at the sequence $\log f(n) / \sqrt{n}$ for $1 \leq n \leq 508$, it seems that this too converges to a limit, that appears to be a bit larger than 1.517 (but of course way less than $2.565099661 \ldots$). Let's call that constant the Wilf constant.

The numerical evidence is here: http://www.math.rutgers.edu/~zeilberg/tokhniot/oDMP4 .
Let me conclude with two challenges.

- Prove that the Wilf constant exists.
- Determine the exact value of the Wilf constant (if it exists) in terms of π or other famous constants. Failing this, find non-trivial rigorous lower and upper bounds.

Added Feb. 1, 2012: According to Daniel Kane [so far private communication, hopefully he would write it up soon] the true asymptotics of $\log f(n)$ is $(6 n)^{1 / 3} \log (n) / 3$.

Added Feb. 4, 2012: According to Vaclav Kotesovec, this does not agree with the numerics up to 518 terms [but of course, with asymptotics, one may never know for sure]. See
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/dmpKotesovec.gif

References

[W1] Herbert Wilf, Some Unsolved problems, http://www.math.upenn.edu/\~wilf/website/UnsolvedProblems.pdf, posted: Dec. 13, 2010. (viewed Jan. 16, 2012)
[W2] Herbert S. Wilf, "Generatingfunctionology", Academic Press, First edition 1990, Second Edition 1994. Third Edition: AK Peters, 2005. Second edition is freely downloadable from http://www.math.upenn.edu/\~wilf/gfology2.pdf.
[W3] Herbert S. Wilf, What is an Answer?, Amer. Math. Monthly 89 (1982), 289-292.
[Z] Doron Zeilberger, Enumerative and Algebraic Combinatorics, in: "Princeton Companion to Mathematics", (Timothy Gowers, ed.), Princeton University Press, 550-561. Available from: http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/enu.pdf

[^0]: 1 Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. zeilberg at math dot rutgers dot edu,
 http://www.math.rutgers.edu/~zeilberg/ . First Version: Jan. 18, 2012. Last version, Feb. 4, 2012 [putting a link to Vaclav Kotesovec's graph. Pervious Version: Feb. 1, 2012 [adding a comment of Daniel Kane at the end]. Accompanied by Maple package DMP
 downloadable from http://www.math.rutgers.edu/~zeilberg/tokhniot/DMP. Sample input and output files may be viewed in the front of this article:
 http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/dmp.html. Supported in part by the USA National Science Foundation.

