Proof of a Conjecture of Philippe Di Francesco and Paul Zinn-Justin related to the qKZ equation and to Dave Robbins' Two Favorite Combinatorial Objects

Doron ZEILBERGER¹

For any Laurent polynomial $P(z_1, \ldots, z_n)$ in the variables (z_1, \ldots, z_n) , the *anti-symmetrizer*, $\mathcal{A}(P)$, is defined by:

$$\mathcal{A}(P)(z_1,...,z_n) = \sum_{\pi \in S_n} (-1)^{inv(\pi)} P(z_{\pi(1)},...,z_{\pi(n)})$$

where S_n is the group of permutations on $\{1, \ldots, n\}$ and $inv(\pi)$ is the number of inversions of π (the number of pairs $1 \le i < j \le n$ such that $\pi(i) > \pi(j)$).

Define the *negativizer* of P, $\mathcal{N}(P)$, to be the polynomial in $z_1^{-1}, \ldots, z_n^{-1}$ obtained by removing all monomials that have at least one positive exponent.

For example, $\mathcal{A}(5+z_1^{-1}+z_1^3z_2^{-2}) = z_1^{-1}+z_1^3z_2^{-2}-z_2^{-1}-z_2^3z_1^{-2}$, and $N(5+z_1^{-1}+z_1^3z_2^{-2}) = 5+z_1^{-1}$.

Let

$$F_n(z_1, \dots, z_n) = \prod_{i=1}^n z_i^{-2i+2} \prod_{1 \le i \le j \le n} (1 - z_i z_j) \prod_{1 \le i < j \le n} (1 + z_i z_j + T z_j) ,$$

$$B_n(z_1, \dots, z_n) = \prod_{1 \le i < j \le n} (z_j^{-1} - z_i^{-1}) (T + z_i^{-1} + z_j^{-1}) .$$

In [1] (Eq. (4.4)), the following conjecture was made:

$$\mathcal{N}\left[\mathcal{A}\left[F_n(z_1,\ldots,z_n)\right]\right] = B_n(z_1,\ldots,z_n) \quad . \tag{DiFZJ}$$

Let $G_n = \mathcal{A}(F_n)$. By breaking-up the summation over S_n into those π for which $\pi(n) = j$ $(j = 1, ..., n), G_n$ is seen to satisfy the recurrence

$$G_n(z_1, \dots, z_n) = \sum_{j=1}^n (-1)^{n-j} \left(z_j^{1-2n} (1-z_j^2) \prod_{i=1, i \neq j}^n \left[(1+z_i z_j + T z_j) (1-z_i z_j) \right] \right) \cdot G_{n-1}(z_1, \dots, z_{j-1}, z_{j+1}, \dots, z_n) \quad .$$

Let $H_n = \mathcal{N}(G_n)$. We want to prove that for every n, $H_n = B_n$. We will do it by induction on n. The case n = 1 is obviously true (check!). Applying the \mathcal{N} -operation to both sides, and noting that since the factor in front of $G_{n-1}(z_1, \ldots, z_{j-1}, z_{j+1}, \ldots, z_n)$ only has *positive* exponents in $(z_1, \ldots, z_{j-1}, z_{j+1}, \ldots, z_n)$,

¹ Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. zeilberg at math dot rutgers dot edu ,

http://www.math.rutgers.edu/~zeilberg . First Version: March 21, 2007. This Version: March 27, 2007, [incorporating remarks of referee Philippe Di Francesco]. Exclusively published in the Personal Journal of S.B. Ekhad and D. Zeilberger http://www.math.rutgers.edu/~zeilberg/pj.html . Supported in part by the NSF.

we have

$$H_n(z_1, \dots, z_n) = \mathcal{N} \left\{ \sum_{j=1}^n (-1)^{n-j} z_j^{1-2n} (1-z_j^2) \prod_{i=1, i \neq j}^n [(1+z_i z_j + Tz_j)(1-z_i z_j)] \cdot H_{n-1}(z_1, \dots, z_{j-1}, z_{j+1}, \dots, z_n) \right\} .$$

By the inductive hypothesis $H_{n-1} = B_{n-1}$ so we have to prove that

$$B_n(z_1, \dots, z_n) = \mathcal{N}\left\{\sum_{j=1}^n \left((-1)^{n-j} z_j^{1-2n} (1-z_j^2) \prod_{i=1, i \neq j}^n \left[(1+z_i z_j + T z_j) (1-z_i z_j) \right] \right) \cdot B_{n-1}(z_1, \dots, z_{j-1}, z_{j+1}, \dots, z_n) \right\}$$

It turns out that the *negativizand* on the right side is *nice*:

$$\sum_{j=1}^{n} \left((-1)^{n-j} z_j^{1-2n} (1-z_j^2) \prod_{i=1, i \neq j}^{n} \left[(1+Tz_j+z_i z_j) (1-z_i z_j) \right] \right) \cdot B_{n-1}(z_1, \dots, z_{j-1}, z_{j+1}, \dots, z_n) = B_n(z_1, \dots, z_n) (1-z_1^2 z_2^2 \cdots z_n^2) \quad .$$
 (NiceSurprise)

We now need:

A Simple Fact: Each and every monomial in $B_n(z_1, \ldots, z_n)z_1^2z_2^2\cdots z_n^2$ has at least one positive exponent, hence its negativizer is 0.

Proof of the Simple Fact: (This simple argument of referee Philippe Di Francesco replaces a previous more complicated argument).

$$B_n(z_1, \dots, z_n) = \prod_{1 \le i < j \le n} (Tz_j^{-1} + z_j^{-2} - Tz_i^{-1} - z_i^{-2}) = \prod_{1 \le i < j \le n} [(T/2 + z_j^{-1})^2 - (T/2 + z_i^{-1})^2]$$

So each term in the last product can't have all the variables, and the same is true when it is fully expanded, and it follows that each monomial in $B_n(z_1, \ldots, z_n)z_1^2 z_2^2 \cdots z_n^2$ has at least one positive exponent.

Hence:

$$\mathcal{N}(B_n(z_1,\ldots,z_n)(1-z_1^2z_2^2\cdots z_n^2)) = B_n(z_1,\ldots,z_n)$$

and (DiFZJ) would follow. It remains to prove (NiceSurprise). By dividing both sides by B_n , letting $z_i \to z_i^{-1}$ $(1 \le i \le n)$, and rearranging terms, we see that it is equivalent to the following:

$$\sum_{j=1}^{n} \frac{(2z_j+T)\prod_{i=1}^{n}[(1+z_i(T+z_j))(1-z_iz_j)]}{(1+z_jT+z_j^2)\prod_{i=1,i\neq j}^{n}(z_j-z_i)\prod_{i=1}^{n}(z_j+z_i+T)} = (-1)^{n-1}(1-z_1^2\cdots z_n^2) \quad .$$
(IntriguingIdentity)

Let $\alpha = \alpha(T)$ and $\beta = \beta(T)$ be the two roots of $1 + zT + z^2 = 0$. Note that $\alpha + \beta = -T$ and $\alpha\beta = 1$.

Recall the Lagrange Interpolation Formula. For any polynomial P(z) of degree $\leq N - 1$ and any numbers w_1, \ldots, w_N , we have

$$P(z) = \sum_{j=1}^{N} \frac{P(w_j) \prod_{i=1, i \neq j}^{N} (z - w_i)}{\prod_{i=1, i \neq j}^{N} (w_j - w_i)} \quad .$$
(L1)

[Proof: both sides are equal at the N numbers $z = w_1, \ldots, w_N$, hence they are *always* equal (being polynomials of degree $\leq N - 1$)].

In fact, we will only need the corollary obtained by comparing the coefficient of z^{N-1} on both sides

Coefficient of
$$z^{N-1}$$
 in $P(z) = \sum_{j=1}^{N} \frac{P(w_j)}{\prod_{i=1, i \neq j}^{n} (w_j - w_i)}$

Now let

$$P(z) := (2z+T) \prod_{i=1}^{n} \left[(1+z_i(T+z))(1-z_i z) \right] \quad ,$$

and pick the w's to be the 2n + 2 numbers

$$\{z_1,\ldots,z_n, -z_1-T,\ldots,-z_n-T, \alpha,\beta\}$$
,

in order to get:

$$2(-1)^{n} z_{1}^{2} \cdots z_{n}^{2} = \sum_{j=1}^{n} \frac{P(z_{j})}{(1+z_{j}T+z_{j}^{2})\prod_{i=1,i\neq j}^{n}(z_{j}-z_{i})\prod_{i=1}^{n}(z_{j}+z_{i}+T)}$$

$$+ \sum_{j=1}^{n} \frac{P(-T-z_{j})}{(1+z_{j}T+z_{j}^{2})\prod_{i=1}^{n}(-z_{j}-T-z_{i})\prod_{i=1,i\neq j}^{n}(-z_{j}-T+z_{i}+T)}$$

$$+ \frac{P(\alpha)}{(\alpha-\beta)\prod_{i=1}^{n}(\alpha-z_{i})\prod_{i=1}^{n}(\alpha+z_{i}+T)}$$

$$+ \frac{P(\beta)}{(\beta-\alpha)\prod_{i=1}^{n}(\beta-z_{i})\prod_{i=1}^{n}(\beta+z_{i}+T)} \cdot$$

Using $P(-T - z_j) = -P(z_j)$ (check!), $\alpha\beta = 1$ and $\alpha + \beta = -T$, and manipulating the obvious cancellations, and observing that the first two terms are identical, while the sum of the last two terms simplifies to $2(-1)^n$, we get that (*IntriguingIdentity*) is indeed true. \Box .

Reference

1. P. Di Francesco and P. Zinn-Justin, Quantum Knizhnik-Zamolodchikov equation, Totally Symmetric Self-Complementary Plane Partitions and Alternating Sign Matrices, http://www.arxiv.org/abs/math-ph/0703015.