Proof of a Conjecture of Philippe Di Francesco and Paul Zinn-Justin related to the qKZ equation and to Dave Robbins' Two Favorite Combinatorial Objects

Doron ZEILBERGER ${ }^{1}$

For any Laurent polynomial $P\left(z_{1}, \ldots, z_{n}\right)$ in the variables $\left(z_{1}, \ldots, z_{n}\right)$, the anti-symmetrizer, $\mathcal{A}(P)$, is defined by:

$$
\mathcal{A}(P)\left(z_{1}, \ldots, z_{n}\right)=\sum_{\pi \in S_{n}}(-1)^{i n v(\pi)} P\left(z_{\pi(1)}, \ldots, z_{\pi(n)}\right)
$$

where S_{n} is the group of permutations on $\{1, \ldots, n\}$ and $\operatorname{inv}(\pi)$ is the number of inversions of π (the number of pairs $1 \leq i<j \leq n$ such that $\pi(i)>\pi(j)$).

Define the negativizer of $P, \mathcal{N}(P)$, to be the polynomial in $z_{1}^{-1}, \ldots, z_{n}^{-1}$ obtained by removing all monomials that have at least one positive exponent.

For example, $\mathcal{A}\left(5+z_{1}^{-1}+z_{1}^{3} z_{2}^{-2}\right)=z_{1}^{-1}+z_{1}^{3} z_{2}^{-2}-z_{2}^{-1}-z_{2}^{3} z_{1}^{-2}$, and $N\left(5+z_{1}^{-1}+z_{1}^{3} z_{2}^{-2}\right)=5+z_{1}^{-1}$.
Let

$$
\begin{gathered}
F_{n}\left(z_{1}, \ldots, z_{n}\right)=\prod_{i=1}^{n} z_{i}^{-2 i+2} \prod_{1 \leq i \leq j \leq n}\left(1-z_{i} z_{j}\right) \prod_{1 \leq i<j \leq n}\left(1+z_{i} z_{j}+T z_{j}\right) \\
B_{n}\left(z_{1}, \ldots, z_{n}\right)=\prod_{1 \leq i<j \leq n}\left(z_{j}^{-1}-z_{i}^{-1}\right)\left(T+z_{i}^{-1}+z_{j}^{-1}\right)
\end{gathered}
$$

In [1] (Eq. (4.4)), the following conjecture was made:

$$
\begin{equation*}
\mathcal{N}\left[\mathcal{A}\left[F_{n}\left(z_{1}, \ldots, z_{n}\right)\right]\right]=B_{n}\left(z_{1}, \ldots, z_{n}\right) . \tag{DiFZJ}
\end{equation*}
$$

Let $G_{n}=\mathcal{A}\left(F_{n}\right)$. By breaking-up the summation over S_{n} into those π for which $\pi(n)=j$ $(j=1, \ldots, n), G_{n}$ is seen to satisfy the recurrence

$$
\begin{gathered}
G_{n}\left(z_{1}, \ldots, z_{n}\right)=\sum_{j=1}^{n}(-1)^{n-j}\left(z_{j}^{1-2 n}\left(1-z_{j}^{2}\right) \prod_{i=1, i \neq j}^{n}\left[\left(1+z_{i} z_{j}+T z_{j}\right)\left(1-z_{i} z_{j}\right)\right]\right) . \\
G_{n-1}\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right) .
\end{gathered}
$$

Let $H_{n}=\mathcal{N}\left(G_{n}\right)$. We want to prove that for every $n, H_{n}=B_{n}$. We will do it by induction on n. The case $n=1$ is obviously true (check!). Applying the \mathcal{N}-operation to both sides, and noting that since the factor in front of $G_{n-1}\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right)$ only has positive exponents in $\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right)$,

[^0]we have
\[

$$
\begin{gathered}
H_{n}\left(z_{1}, \ldots, z_{n}\right)=\mathcal{N}\left\{\sum_{j=1}^{n}(-1)^{n-j} z_{j}^{1-2 n}\left(1-z_{j}^{2}\right) \prod_{i=1, i \neq j}^{n}\left[\left(1+z_{i} z_{j}+T z_{j}\right)\left(1-z_{i} z_{j}\right)\right] .\right. \\
\left.H_{n-1}\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right)\right\} .
\end{gathered}
$$
\]

By the inductive hypothesis $H_{n-1}=B_{n-1}$ so we have to prove that

$$
\begin{gathered}
B_{n}\left(z_{1}, \ldots, z_{n}\right)=\mathcal{N}\left\{\sum_{j=1}^{n}\left((-1)^{n-j} z_{j}^{1-2 n}\left(1-z_{j}^{2}\right) \prod_{i=1, i \neq j}^{n}\left[\left(1+z_{i} z_{j}+T z_{j}\right)\left(1-z_{i} z_{j}\right)\right]\right) .\right. \\
\left.B_{n-1}\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right)\right\} .
\end{gathered}
$$

It turns out that the negativizand on the right side is nice:

$$
\begin{gathered}
\sum_{j=1}^{n}\left((-1)^{n-j} z_{j}^{1-2 n}\left(1-z_{j}^{2}\right) \prod_{i=1, i \neq j}^{n}\left[\left(1+T z_{j}+z_{i} z_{j}\right)\left(1-z_{i} z_{j}\right)\right]\right) \cdot B_{n-1}\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right)= \\
B_{n}\left(z_{1}, \ldots, z_{n}\right)\left(1-z_{1}^{2} z_{2}^{2} \cdots z_{n}^{2}\right) .
\end{gathered}
$$

We now need:
A Simple Fact: Each and every monomial in $B_{n}\left(z_{1}, \ldots, z_{n}\right) z_{1}^{2} z_{2}^{2} \cdots z_{n}^{2}$ has at least one positive exponent, hence its negativizer is 0 .

Proof of the Simple Fact: (This simple argument of referee Philippe Di Francesco replaces a previous more complicated argument).

$$
B_{n}\left(z_{1}, \ldots, z_{n}\right)=\prod_{1 \leq i<j \leq n}\left(T z_{j}^{-1}+z_{j}^{-2}-T z_{i}^{-1}-z_{i}^{-2}\right)=\prod_{1 \leq i<j \leq n}\left[\left(T / 2+z_{j}^{-1}\right)^{2}-\left(T / 2+z_{i}^{-1}\right)^{2}\right]
$$

So each term in the last product can't have all the variables, and the same is true when it is fully expanded, and it follows that each monomial in $B_{n}\left(z_{1}, \ldots, z_{n}\right) z_{1}^{2} z_{2}^{2} \cdots z_{n}^{2}$ has at least one positive exponent.

Hence:

$$
\mathcal{N}\left(B_{n}\left(z_{1}, \ldots, z_{n}\right)\left(1-z_{1}^{2} z_{2}^{2} \cdots z_{n}^{2}\right)\right)=B_{n}\left(z_{1}, \ldots, z_{n}\right)
$$

and (DiFZJ) would follow. It remains to prove (NiceSurprise). By dividing both sides by B_{n}, letting $z_{i} \rightarrow z_{i}^{-1}(1 \leq i \leq n)$, and rearranging terms, we see that it is equivalent to the following:

$$
\sum_{j=1}^{n} \frac{\left(2 z_{j}+T\right) \prod_{i=1}^{n}\left[\left(1+z_{i}\left(T+z_{j}\right)\right)\left(1-z_{i} z_{j}\right)\right]}{\left(1+z_{j} T+z_{j}^{2}\right) \prod_{i=1, i \neq j}^{n}\left(z_{j}-z_{i}\right) \prod_{i=1}^{n}\left(z_{j}+z_{i}+T\right)}=(-1)^{n-1}\left(1-z_{1}^{2} \cdots z_{n}^{2}\right)
$$

(IntriguingIdentity)

Let $\alpha=\alpha(T)$ and $\beta=\beta(T)$ be the two roots of $1+z T+z^{2}=0$. Note that $\alpha+\beta=-T$ and $\alpha \beta=1$.

Recall the Lagrange Interpolation Formula. For any polynomial $P(z)$ of degree $\leq N-1$ and any numbers w_{1}, \ldots, w_{N}, we have

$$
\begin{equation*}
P(z)=\sum_{j=1}^{N} \frac{P\left(w_{j}\right) \prod_{i=1, i \neq j}^{N}\left(z-w_{i}\right)}{\prod_{i=1, i \neq j}^{N}\left(w_{j}-w_{i}\right)} . \tag{LI}
\end{equation*}
$$

[Proof: both sides are equal at the N numbers $z=w_{1}, \ldots, w_{N}$, hence they are always equal (being polynomials of degree $\leq N-1$)].

In fact, we will only need the corollary obtained by comparing the coefficient of z^{N-1} on both sides

$$
\text { Coefficient of } \quad z^{N-1} \quad \text { in } \quad P(z)=\sum_{j=1}^{N} \frac{P\left(w_{j}\right)}{\prod_{i=1, i \neq j}^{n}\left(w_{j}-w_{i}\right)} .
$$

Now let

$$
P(z):=(2 z+T) \prod_{i=1}^{n}\left[\left(1+z_{i}(T+z)\right)\left(1-z_{i} z\right)\right]
$$

and pick the w 's to be the $2 n+2$ numbers

$$
\left\{z_{1}, \ldots, z_{n}, \quad-z_{1}-T, \ldots,-z_{n}-T, \quad \alpha, \beta\right\}
$$

in order to get:

$$
\begin{aligned}
& 2(-1)^{n} z_{1}^{2} \cdots z_{n}^{2}=\sum_{j=1}^{n} \frac{P\left(z_{j}\right)}{\left(1+z_{j} T+z_{j}^{2}\right) \prod_{i=1, i \neq j}^{n}\left(z_{j}-z_{i}\right) \prod_{i=1}^{n}\left(z_{j}+z_{i}+T\right)} \\
& +\sum_{j=1}^{n} \frac{P\left(-T-z_{j}\right)}{\left(1+z_{j} T+z_{j}^{2}\right) \prod_{i=1}^{n}\left(-z_{j}-T-z_{i}\right) \prod_{i=1, i \neq j}^{n}\left(-z_{j}-T+z_{i}+T\right)} \\
& \quad+\frac{P(\alpha)}{(\alpha-\beta) \prod_{i=1}^{n}\left(\alpha-z_{i}\right) \prod_{i=1}^{n}\left(\alpha+z_{i}+T\right)} \\
& \quad+\frac{P(\beta)}{(\beta-\alpha) \prod_{i=1}^{n}\left(\beta-z_{i}\right) \prod_{i=1}^{n}\left(\beta+z_{i}+T\right)}
\end{aligned}
$$

Using $P\left(-T-z_{j}\right)=-P\left(z_{j}\right)$ (check!), $\alpha \beta=1$ and $\alpha+\beta=-T$, and manipulating the obvious cancellations, and observing that the first two terms are identical, while the sum of the last two terms simplifies to $2(-1)^{n}$, we get that (IntriguingIdentity) is indeed true.

Reference

1. P. Di Francesco and P. Zinn-Justin, Quantum Knizhnik-Zamolodchikov equation, Totally Symmetric Self-Complementary Plane Partitions and Alternating Sign Matrices, http://www.arxiv.org/abs/mathph/0703015.

[^0]: 1 Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. zeilberg at math dot rutgers dot edu,
 http://www.math.rutgers.edu/~zeilberg. First Version: March 21, 2007. This Version: March 27, 2007, [incorporating remarks of referee Philippe Di Francesco]. Exclusively published in the Personal Journal of S.B. Ekhad and D. Zeilberger http://www.math.rutgers.edu/~zeilberg/pj.html. Supported in part by the NSF.

