Proof of a Conjecture of Philippe di Francesco and Paul Zinn-Justin related to the qKZ equations and to Dave Robbins' Two Favorite Combinatorial Objects

Doron ZEILBERGER ${ }^{1}$

For any Laurent polynomial $P\left(z_{1}, \ldots, z_{n}\right)$ in the variables $\left(z_{1}, \ldots, z_{n}\right)$, recall that the anti-symmetrizer, $A S(P)$ is defined by:

$$
A S(P)\left(z_{1}, \ldots, z_{n}\right)=\sum_{\pi \in S_{n}}(-1)^{i n v(\pi)} P\left(z_{\pi(1)}, \ldots, z_{\pi(n)}\right)
$$

where S_{n} is the group of permutations on $\{1, \ldots, n\}$ and $\operatorname{inv}(\pi)$ is the number of inversions of π (the number of pairs $1 \leq i<j \leq n$ such that $\pi(i)>\pi(j)$).

Also define the negative-part of $P, N(P)$, to be the polynomial in $1 / z_{1}, \ldots, 1 / z_{n}$ obtained by removing all monomials that have at least one positive exponent.

For example, $A S\left(5+z_{1}^{-1}+z_{1}^{3} z_{2}^{-2}\right)=z_{1}^{-1}+z_{1}^{3} z_{2}^{-2}-z_{2}^{-1}-z_{2}^{3} z_{1}^{-2}$, and $N\left(5+z_{1}^{-1}+z_{1}^{3} z_{2}^{-2}\right)=5+z_{1}^{-1}$.
Let

$$
\begin{gathered}
F_{n}\left(z_{1}, \ldots, z_{n}\right)=\prod_{i=1}^{n} z_{i}^{-2 i+2} \prod_{1 \leq i \leq j \leq n}\left(1-z_{i} z_{j}\right) \prod_{1 \leq i<j \leq n}\left(1+z_{i} z_{j}+T z_{j}\right) \\
B_{n}\left(z_{1}, \ldots, z_{n}\right)=\prod_{1 \leq i<j \leq n}\left(z_{j}^{-1}-z_{i}^{-1}\right)\left(T+z_{i}^{-1}+z_{j}^{-1}\right)
\end{gathered}
$$

In [1] (Eq. (4.4)), the following conjecture was made:

$$
\begin{equation*}
N\left[A S\left[F_{n}\left(z_{1}, \ldots, z_{n}\right)\right]\right]=B_{n}\left(z_{1}, \ldots, z_{n}\right) . \tag{diFJZ}
\end{equation*}
$$

Let $G_{n}=A S\left(F_{n}\right)$. By breaking-up the summation over S_{n} into those π for which $\pi(n)=i$ $(i=1, \ldots, n), G_{n}$ is seen to satisfy the recurrence

$$
\begin{gathered}
G_{n}\left(z_{1}, \ldots, z_{n}\right)=\sum_{j=1}^{n}(-1)^{n-j}\left(z_{j}^{1-2 n}\left(1-z_{j}^{2}\right) \prod_{i=1, i \neq j}^{n}\left[\left(1+T z_{j}+L z_{i} z_{j}\right)\left(1-z_{i} z_{j}\right)\right]\right) . \\
G_{n-1}\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right) .
\end{gathered}
$$

Let $H_{n}=N\left(G_{n}\right)$ (our object of desire). Applying the N-operation to both sides, and noting that since the factor in front of $G_{n-1}\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right)$ only has positive exponents in $\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right)$,

[^0]we have
\[

$$
\begin{gathered}
H_{n}\left(z_{1}, \ldots, z_{n}\right)=N\left\{\sum_{j=1}^{n}(-1)^{n-j} z_{j}^{1-2 n}\left(1-z_{j}^{2}\right) \prod_{i=1, i \neq j}^{n}\left[\left(1+T z_{j}+L z_{i} z_{j}\right)\left(1-z_{i} z_{j}\right)\right] .\right. \\
\left.H_{n-1}\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right)\right\} .
\end{gathered}
$$
\]

By the inductive hypotheis $H_{n-1}=B_{n-1}$ so we have to prove that

$$
\begin{gathered}
B_{n}\left(z_{1}, \ldots, z_{n}\right)=N\left\{\sum_{j=1}^{n}(-1)^{n-j} z_{j}^{1-2 n}\left(1-z_{j}^{2}\right) \prod_{i=1, i \neq j}^{n}\left[\left(1+T z_{j}+L z_{i} z_{j}\right)\left(1-z_{i} z_{j}\right)\right] .\right. \\
\left.B_{n-1}\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right)\right\} .
\end{gathered}
$$

Now comes a:
Nice Surprise:

$$
\begin{gathered}
\sum_{j=1}^{n}\left((-1)^{n-j} z_{j}^{1-2 n}\left(1-z_{j}^{2}\right) \prod_{i=1, i \neq j}^{n}\left[\left(1+T z_{j}+L z_{i} z_{j}\right)\left(1-z_{i} z_{j}\right)\right]\right) \cdot B_{n-1}\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right)= \\
B_{n}\left(z_{1}, \ldots, z_{n}\right)\left(1-z_{1}^{2} z_{2}^{2} \cdots z_{n}^{2}\right) .
\end{gathered}
$$

By the pigeonhole principle, each and every monomial feauting in $B_{n}\left(z_{1}, \ldots, z_{n}\right) z_{1}^{2} z_{2}^{2} \cdots z_{n}^{2}$ has at least one positive exponent, hence

$$
N\left(B_{n}\left(z_{1}, \ldots, z_{n}\right)\left(1-z_{1}^{2} z_{2}^{2} \cdots z_{n}^{2}\right)\right)=B_{n}\left(z_{1}, \ldots, z_{n}\right)
$$

and (diFJZ) would follow. It remains to prove the Nice Surprise. By dividing both sides of (NiceSurprise) by B_{n}, and rearranging terms, we see that it is equivalent to the following Intriguing Identity:

$$
\sum_{j=1}^{n} \frac{\left(2 z_{j}+T\right) \prod_{i=1}^{n}\left[\left(1+z_{i}\left(T+z_{j}\right)\right)\left(1-z_{i} z_{j}\right)\right]}{\left(1+z_{j} T+z_{j}^{2}\right) \prod_{i=1, i \neq j}^{n}\left(z_{j}-z_{i}\right) \prod_{i=1}^{n}\left(z_{j}+z_{i}+T\right)}=(-1)^{n-1}\left(1-z_{1}^{2} \cdots z_{n}^{2}\right)
$$

(IntriguingIdentity)
Let $\alpha=\alpha(T)$ and $\beta=\beta(T)$ be the two roots of $1+z T+z^{2}=0$. Note that $\alpha+\beta=-T$ and $\alpha \beta=1$.

Now it is obvious whom to call for help! Dear old Count Joe!, a.k.a. as Joseph-Louis Lagrange, Comte de l'Empire, whose humble (and a posteriori trivial) Lagrange Interpolation Formula is at least as useful as Euler-Lagrange and Lagrange multipliers and sum-of-four-squares combined! To wit, for any polynomial $P(z)$ of degree $\leq N-1$ and any numbers w_{1}, \ldots, w_{N}, we have

$$
\begin{equation*}
P(z)=\sum_{j=1}^{N} \frac{P\left(w_{j}\right) \prod_{i=1, i \neq j}^{N}\left(z-w_{i}\right)}{\prod_{i=1, i \neq j}^{N}\left(w_{j}-w_{i}\right)} . \tag{LI}
\end{equation*}
$$

(Proof: both sides are equal at the N numbers $z=w_{1}, \ldots, w_{N}$, hence they always equal (being polynomials of degree $\leq N-1$).

In fact, we will only need the corollary obtained by comparing the coefficient of z^{N-1} on both sides

$$
\text { Coeff of } \quad z^{N-1} \quad \text { of } P(z)=\sum_{j=1}^{N} \frac{P\left(w_{j}\right)}{\prod_{i=1, i \neq j}^{n}\left(w_{j}-w_{i}\right)} .
$$

Now Lagrange-Interpolate

$$
P(z):=(2 z+T) \prod_{i=1}^{n}\left[\left(1+z_{i}(T+z)\right)\left(1-z_{i} z\right)\right]
$$

with respect to the $2 n+2$ numbers

$$
\left\{z_{1}, \ldots, z_{n},-z_{1}-T, \ldots,-z_{n}-T, \alpha, \beta\right\}
$$

in order to get

$$
\begin{gathered}
2(-1)^{n} z_{1}^{2} \cdots z_{n}^{2}=\sum_{j=1}^{n} \frac{P\left(z_{j}\right)}{\left(1+z_{j} T+z_{j}^{2}\right) \prod_{i=1, i \neq j}^{n}\left(z_{j}-z_{i}\right) \prod_{i=1}^{n}\left(z_{j}+z_{i}+T\right)} \\
+\sum_{j=1}^{n} \frac{P\left(-T-z_{j}\right)}{\left(1+z_{j} T+z_{j}^{2}\right) \prod_{i=1, i \neq j}^{n}\left(-z_{j}-T-z_{i}\right) \prod_{i=1}^{n}\left(-z_{j}-T+z_{i}+T\right)} \\
\quad+\frac{P(\alpha)}{(\alpha-\beta) \prod_{i=1}^{n}\left(\alpha-z_{i}\right) \prod_{i=1}^{n}\left(\alpha+z_{i}+T\right)} \\
+\frac{P(\beta)}{(\beta-\alpha) \prod_{i=1}^{n}\left(\beta-z_{i}\right) \prod_{i=1}^{n}\left(\beta+z_{i}+T\right)}
\end{gathered}
$$

Since $P\left(-T-z_{j}\right)=-P\left(z_{j}\right)$ (check!) and using $\alpha \beta=1$ and $\alpha+\beta=-T$ to simplify, we get that (IntriguingIdenity) is indeed true.

Reference

1. P. di Francesco and P. Zinn-Justin, Quantum Knizhnik-Zamolodchikov equation, Totally Symmetric Self-Complementary Plane Partitions and Alternating Sign Matrices, http://www.arxiv.org/abs/mathph/0703015.

[^0]: 1 Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. zeilberg at math dot rutgers dot edu,
 http://www.math.rutgers.edu/~zeilberg . March 21, 2007. Exclusively published in the Personal Journal of S.B. Ekhad and D. Zeilberger http://www.math.rutgers.edu/~zeilberg/pj.html. Supported in part by the NSF.

