DECONSTRUCTING the ZEILBERGER algorithm
Doron ZEILBERGER 1
Pour Jacques Derrida, in memoriam

Abstract: By looking under the hood of Zeilberger’s algorithm, as simplified by Mohammed
and Zeilberger, it is shown that all the classical hypergeometric closed-form evaluations can be
discovered ab initio, as well as many “strange” ones of Gosper, Maier, and Gessel&Stanton. The
accompanying Maple package FindHypergeometric explains the various miracles that account for
the classical evaluations, and the more specialized Maple package twoFone, also accompanying this
article, finds many “strange” »Fj evaluations, and these discoveries are in some sense exhaustive.
Hence WZ theory is transgressing the boundaries of the context of justification into the context of

discovery.
Notation. For k integer, (2); :=2(z+1)...(z+k—1),if k> 0and (2); :==1/(2+ k) if K <O.
Prerequisites: We assume familiarity with [MZ].

“That’s very Nice that you Computers can Prove Identities, But you Still Need Us
Humans to Conjecture Them!”, Well, No Longer!

Recall that the Simplified Zeilberger algorithm[MZ] inputs a proper hypergeometric term
F(n,k) = POL(n,k) - H(n,k) (Proper Hypergeometric)
where POL(n, k) is a polynomial in (n, k) and
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where the aj;,a ', d;,d; are non-negative integers, and z, o/, b, !, d! are commuting
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indeterminates. It outputs a non-negative integer L, polynomials (of n) eg(n),e1(n),...,er(n) and
a rational function (of n and k) R(n, k), such that, if G(n,k) := R(n,k)F(n, k), then

L
Z ei(n)F(n+i,k) =G(n,k+1) —G(n, k) . (Zpair)
i=0

Assuming that F(n,+to0) = 0 (as is often the case), we have, by summing w.r.t. k, and noting that
the sum on the right telescopes to 0, that

o9}

a(n) == Y F(n,k)

k=—o0
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satisfies a homogeneous linear differance equation with polynomial coefficients:

L
ei(n)a(n+1) =0 . (Recurrence)
=0

K2

If the order, L, happens to be 1, then the recurrence can be solved in closed-form, and we have a
closed-form evaluation.

In particular, the Zeilberger algorithm (as implemented in my own Maple package EKHAD, and
starting with Maple 6, in the built-in package SumTools[Hypergeometric], and there is a very
popular Mathematica implementation by Paule and Schorn [PS]) can immediately discover the
right hand side, if the left hand side is given. For example, if one inputs

é_:n(_l)k (,r k) ,

one would get back a first-order recurrence for the sum, that immediately entails the closed-form
evaluation (3n)!/n!3.

Since the set of conceivable hypergeometric summands (that humans or computers can write down)
is countable, one can arrange them in lexicographic order, and eventually, just like in Hilbert’s
dream, get to any specific hypergeometric sum, and get the recurrence it satisfies (and with
Petkovsek’s[P] celebrated algorithm (see also [PWZ]), one can guarantee that it is minimal). If
we are only interested in finding closed-form evaluations, i.e. the cases when L = 1, then we can
just discard all the times when we get L > 1, and then publish a book of ‘closed-form evaluations’,
of any bounded ‘complexity’.

Alas, in this way it may take a thousand years to get to Saalschiitz or Dixon, and a million years to
get to Dougall. In this article I will outline an efficient algorithm for outputting all hypergeometric
closed-form evaluations of any bounded ‘complexity’. Unfortunately, if that complexity gets higher,
it runs out of time and memory, but it can outperform by orders of magnitude an exhaustive search.

WZ theory already has a mechanism for generating new identities by the process of specializing and
dualizing, ((WZ], see also [PWZ]). This technique was elevated to an art form by Ira Gessel|Ge].
However, if we do this randomly, we would get lots of ‘new’ such evaluations, but the summands,
while technically proper-hypergeometric, are usually extremely messy, in the sense that they are far
from being purely-hypergeometric, i.e. their polynomial part (POL(n,k) above) is of high degree.
Also, this approach needs the classical identities (Saalschiitz, Dixon, Dougall etc.) as starters.

In the present approach we can rediscover from scratch, in a natural way, all the classical, and
the so-called strange ([GS]) hypergeometric closed-form evaluations. The algorithm also has the
potential to discover many new such strange identities.



Robert Maier’s Neo-Classical Approach

Hypergeometric series started out as solutions of certain ordinary differential equations. Using this
fact, Euler, Gauss, Kummer, Riemann, Goursat and other giants, found transformation formulas,
that lead to the classical evaluations. On the other hand, WZ theory considers the erstwhile
parameters as active discrete variables.

Quite recently, Robert Maier[Ma] found a brand-new transformation formula for (a general!) , 41 F.,
that obeys algebraic constraints. 1 don’t see any way to prove, let alone discover, them with WZ
theory. So the moral is: find new approaches but keep the old ones ....

Under the Hood of Zeilberger

Abramov and Le ([A],[AL]) showed that the (original) Zeilberger algorithm sometimes works even
for hypergeometric summands that are non-proper. However, for the most important case of proper-
hypergeometric summation, the Zeilberger algorithm has been considerably simplified in [MZ],
where it is shown that there is a sharp upper bound for L, which is really what it should be, if
F(n, k) is replaced by F(n, k)z*. But in special cases, L may be smaller. I strongly recommend that
the reader experiment with procedure DoronMiracles in the Maple package FindHyperGeometric
accompanying this article. DoronMiracles is a verbose rendition, that traces the algorithm, and
lists any ‘miracles’ that happen that help reduce L from its generic promised value.

Recall from [MZ] that everything boils down to solving the linear equation
f(B)X(k+1)—gk—1)X(k) —h(k)=0 , (Gosper)

where f(k), g(k), h(k) are certain polynomials derivable from the input; h(k) depends linearly
on the unknowns e;(n)’s; and the coefficients of X (k) are also unknowns. The argument in [MZ]
displays an L, and a degree, let’s call it M, for X (k), such that if one substitutes a generic polynomial
of degree M in k, for X (k), expands (Gosper), and then sets all the coefficients of the resulting
polynomial in k to 0, one gets a system of homogeneous linear equations with more unknowns than
equations, and hence with a guarantee for a non-zero solution.

Miracles

However, sometimes pleasant surprises occur, and the guaranteed L can be made lower, thanks to

maracles.

A miracle of the first kind happens when there is a potential cancellation in the left of (Gosper).
That happens when the degrees (in k) of f(k) and g(k) are the same, and the leading coefficients
of f(k) and g(k) are also the same. Then the potential degree gets upped by 1.

A miracle of the second kind can only happen in the wake of a miracle of the first kind. It is an
extremely rare event. It happens when the potential degree of X (k) can be made yet higher. To
test for it, write the leading and second-to-leading coefficients of X (k) in generic form, with generic
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degree, plug into (Gosper), and look at the leading coefficient and set it equal to 0. You will get
a certain equation for that guessed degree. Usually (and certainly generically) the solution would
be symbolic, and hence impossible, but if it happens to be a numeric integer, and it exceeds the
proposed degree promised by the first miracle, then we do indeed have a miracle of the second kind.
Interestingly, Apéry’s celebrated sum

2": (n - k) ? (n) ?
7
= k k
whose ‘generic’ order is 4, actually has order 2, because it is a beneficiary of this extremely rare
miracle of the second kind.

Finally, once we settled for the highest-possible-degree for X (k), and replaced it in (Gosper) by a
generic polynomial of that degree, with undetermined coefficients, we expand everything, and set
all the coefficients of the polynomial, in k, of the left side of (Gosper), to zero. We get a system
of homogeneous linear equations for a certain set of unknowns. These unknowns consist of the
coefficients of X (k), as well as the coefficients, e;(n), of the desired recurrence. Sometimes having
the first and/or second miracle is already enough to have more unknowns than equations, but in
the contrary case, there is still hope.

Indeed, if in luck, a system of linear equations with #equations>#unknowns may have a non-zero
solution. All we need is that a certain determinant (or determinants) vanish! In that case, we have
a maracle of the third kind.

Note that the third miracle may still happen even if the first and second ones did not. Sometimes
the first miracle suffices by itself, sometimes we need the first and the second, sometimes we need
the first and the third, sometimes we even need all three miracles(see below), but many times
the third miracle by itself suffices.

The Miracles that Gauss, Kummer, Saalschiitz, Dixon, and Dougall should be Grateful
for

By running DoronMiracles in the Maple package FindHyperGeometric (type ezra(DoronMiracles) :
there, for help), we are told the following.

Gauss’s 2 F(a, b;c; 1) happens because of the first miracle, that suffices.

Gauss’s o F' (2a, 2b;a+b+1/2;1/2) happens because of the third miracle. The first miracle didn’t
happen, but the third one saved the day. This seems to be the case in all the strange evaluations,
at least for o Fy’s (see [E]).

Likewise, Kummer’s 2 Fi(a,b;1 + a — b; —1) happens only because of the third miracle. So it
deserves the name strange, even though it has two parameters.

The celebrated Pfaff-Saalchiitz four-parameter 3F»(a, b, —n;c, 1+a+b—c—mn; 1) evaluation happens
because of the first and second miracles. The generosity of the second miracle produces less
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equations than unknowns (in the last, solving (Gosper), phase), hence there was no need for

another miracle.

For the equally celebrated Dixon three-parameter 3F5(a,b,c;1 +a —b,1+ a — ¢; 1) evaluation, the
first miracle did happen. Alas, no second miracle. But cheer up, Dixon, even though (Gosper)
demands that you solve a set with three equations and three unknowns, that has a priori probability
0 of success, nevertheless it can be solved, thanks to a miracle of the third kind.

Last but not least, the Dougall 7 Fg giant (which, in our notation, is really a mere gF5 with a linear
polynomial in front) must be grateful to all three miracles.

To summarize:

Gauss: 1.

GaussHalf, Kummer, all ‘strange’ o F1: 3.

Pfaff-Saalsciitz 1,2.

Dizon: 1,3.

Dougall: 1,2,3.

How to Manufacture Miracles by Tweaking the Zeilberger algorithm

Recall that the input has the form
F(n,k) = POL(n,k) - H(n,k) , (Proper Hypergeometric)
where POL(n, k) is a polynomial in (n, k) and
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where the aj,a’;,b;, b}, ¢, ¢}, d;j, d; are non-negative integers, and z, af,b7,c},d] are commuting

H(n,k) = , (PureHypergeometric)

indeterminates.

Now fix the a;,a’, b;, b}, ¢;, ¢, d;, d; (sorry about that, this can’t be helped, at least for the present
approach), but keep the af,b7,c/,d] and z as indeterminates and ask for what specialization will
one or more of the above miracles happen. It is very easy for the computer to find conditions for the
first miracle, and also for the second (usually it does not happen). The hardest miracle to perform
(computationally) is the third. We have to set a certain determinant (or determinants) to zero,
and get, this time, a set of non-linear (polynomial) equations for the a7, b7, c//,d}’s and z. A priori,
there may be no solution (and indeed often no miracle is possible), but whenever there is a solution,
the computer can find it, since it knows, thanks to Bruno Buchberger and his Grébner bases, how to
solve a system of polynomial equations. For now we are using Maple’s built-in implementation, but

it may be a good idea to use special-purpose programs like Macaulay, SINGULAR, or MAGMA.
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Of course, we are unable to guarantee that we found all hypergeometric identities, even not all
o F1’s, but the Maple package twoFone (to be hopefully followed by packages like threeFtwo) finds
all tuples (a,b,c,b', ', z) such that

—an, bn + b’
; 2)

admits a closed-form evaluation and the integers a, b, ¢ lie in the range 1 < a < Ky, — K <b,c < K,

2 I cn+c

for any inputted positive integers K7, K. The computer also discards all specializations of the
classical identities of Gauss and Kummer, as well as any consequences of previously discovered
identities via the Euler and the two Pfaff Transformations (see [AAR], ch.2, equations (2.2.6),
(2.2.7) and (2.3.14)). So the final listing contains mutually independent genuinely new “strange”
identities. It turns out that for the oF} case, most of them were already known ([GS|[Ma]), yet

some of them seem brand-new.
Future Work

We have only scratched the surface. It would be interesting to generalize the package twoFone to
threeFtwo etc. This is a non-trivial programming task, since we would have to teach the computer
to, automatically, separate the wheat from the chaff, and discard the many identities that are either
specializations of classical evaluations, or equivalent to previously-discovered ones, via one of the

known (or newly-discovered) transformation formulas.

Another interesting problem is to explain, via the present approach, why the recurrence for the
sum of the 2r-th powers of the binomial coefficients has only order r, rather than 2r. At present
we can do it for each and every numeric r, and it turns out (for » < 7), that this happens thanks
to the first and third miracles, but it would be nice to prove it in general, i.e. for symbolic .

Mohamud Mohammed[Mo] is currently working on a g-analog, i.e. an analogous treatment for the
g-Zeilberger algorithm.

Acknowledgement: Many thanks are due to Mohamud Mohammed for many stimulating discus-

sions.
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