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Abstract: We demonstrate the power of Experimental Mathematics and Symbolic Computation to

study intriguing problems on rational difference equations, studied extensively by Difference Equa-

tions giants, Saber Elaydi and Gerry Ladas (and their students and collaborators). In particular we

rigorously prove some fascinating conjectures made by Amal Amleh and Gerry Ladas back in 2000.

For other conjectures we are content with semi-rigorous proofs. We also extend the work of Emilie
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asymptotic stability of arbitrary rational difference equations (with positive coefficients), and more

generally rational transformations of the positive orthant of Rk into itself.
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Preface: Difference Equations, linear, but especially non-linear, are not only so useful in mathe-

matical biology and elsewhere, but are fascinating to study for their own sake. Recall that already

the first order logistic difference equation

xn+1 = λxn(1− xn) , 0 ≤ λ ≤ 4 ,

introduced by Sir Robert May, lead to chaos, one of the central paradigms of our time, as well as

to period-doubling, and the Feigenbaum constants. Here the action takes place in the finite interval

0 ≤ x ≤ 1.

Often in population dynamics one encounters higher-order difference equation where xn+1 is a

rational function of the previous k values.

xn+1 =
a0 +

∑k
i=1 aixn+1−i

b0 +
∑k

i=1 bixn+1−i
,

where the coefficients a0, a1, . . . , ak and b0, b1, . . . , bk are assumed non-negative (and of course

at least one of them is strictly positive at the bottom), and with positive initial conditions

x1, . . . , xk. Here the action takes place in the infinite interval 0 < x <∞.

These difference equations have been studied extensively, with a deep theory, by the two ‘birthday

boys’ and their many disciples, see [1],[2], [3], [4], [6], [7], and references thereof.
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Twelve years ago one of us (DZ), in collaboration with his then PhD student, Emilie Hogan (now

Purvine), initiated the use of symbolic computation, and computer-generated (rigorous!) proofs

to study such difference equations, but only those whose solutions always converge to a unique

equilibrium point, i.e. for which there exists a unique x̄ > 0 such that for any (positive) initial

conditions, x1, . . . , xk, one has limn→∞ xn = x̄, and the challenge was to prove it rigorously.

Note that to prove that a candidate fixed point x̄ is locally stable can be easily done using standard

techniques (see below).

In [1] several fascinating conjectures were made (with monetary prizes offered by Gerry Ladas for

some of them, alas with the very ungenerous deadline of Jan. 1, 2002, long passed). Here is the

first one:

Conjecture ([1]): Prove that every positive solution of the difference equation

xn+1 =
xn−1

xn−1 + xn−2
,

converges to a period two solution of that equation of the form

. . . , φ, 1− φ, . . . ,

with 0 ≤ φ ≤ 1.

In this paper we extend, and improve, the method of [5], and then extend this methodology to

rigorously prove (with the aid of our beloved silicon servants) some of the fascinating conjectures

in [1]. For other ones we will be content with semi-rigorous proofs (see [9] for the concept). We will

argue that often such proofs suffice, since we know that there exists a rigorous proof (or disproof),

but it would be a waste of the computer’s time and memory to find it, since the probability that

the semi-rigorous proof was a false positive is negligible.

We should mention that a pioneering use of computer algebra systems to the study of non-linear

difference equation is the fascinating monograph [8] by M. R. S. Kulenovic and O. Merino.

Accompanying Maple packages

This article is accompanied by two Maple packages.

• DRDS.txt, to experiment, numerically, and symbolically, with solutions of rational difference

equations of any order, and for proving, if possible, rigorously, but more often (if the order is

three and up) semi-rigorously, global asymptotic stability. This latter part is a continuation, and

improvement, of the pioneering work in [5], that focused on second-order difference equations.

• AmalGerry.txt, to prove rigorously (and in some cases, semi-rigorously), some of the intriguing

and tantalizing conjectures made by Amal Amleh and Gerry Ladas in 2001 [1].

Both packages, and numerous input and outputs files, are viewable (and downloadable!) from the

front of this article
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https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/dds.html .

Experimenting with Some Random Rational Difference Equations

One of the purposes of this article is to serve as a tutorial on our Maple package DRDS.txt, that in

addition to proving can be also used as a calculator for exploring and experimenting, numerically,

with rational difference equations.

To get a feel of how a typical rational difference equation looks like, use procedure RRDE(x,n,k,d,A),

where the input parameters are:

• x and n are symbols that correspond to the notation xn in ‘humanese’.

• k is the order of the difference equation

• d is the degree of the numerator and denominator (in this paper we will focus on the degree one

case, but the Maple package can handle any degree).

• A is a positive integer.

The output is such a random rational difference equation whose numerator and denominators have

integer coefficients drawn from {1, . . . , A}.

For example, typing

F:=RRDE(x,n,3,2,30); ,

may give you something like this (of course, every time you get a different difference equation, since

this is random)

xn+1 =
17x2n + 2xnxn−2 + 20xnxn−1 + 21x2n−2 + 25xn−2xn−1 + 17x2n−1 + 8xn + 23xn−2 + 6xn−1 + 13

4x2n + 4xnxn−2 + 29xnxn−1 + 10x2n−2 + 4xn−2xn−1 + 4x2n−1 + 9xn + 6xn−2 + 19xn−1 + 9
.

(1)

To get the first N + k terms of such a difference equation with given initial conditions, type:

L:=OrbD(F,x,n,INI,N);

where F is the difference equation in the above format xn+1 = F , x and n are the symbols used to

express it, INI is a list of of length k, and N is the number of extra terms (so the output list is of

length N + k). For example, typing:

OrbD(x[n]+x[n-1],x,n,[1,1],10);

would yield

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144] .
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Going back to the above complicated (random) third-order difference equation denoted by F above,

typing

L:=OrbD(F,x,n,evalf([21,27,39]),1000):

would give you in floating-point, the first 1003 terms of the sequence with initial conditions x1 =

21, x2 = 27, x3 = 39. Note the colon :, as opposed to the semi-colon, ;, since we really don’t want

to see all of them, we are only interested in the long-term behavior, i.e. whether ultimately it

converges to one number (or in the long-run to a periodic solution (see below)).

Typing L[-1]; and L[-2]; would give respectively, the 1002th and 1003th terms:

1.6358881124186260402 . . . , 1.6358881124186260402 . . . ,

indicating that they are very close, hence, at least with the above initial conditions, the sequence

seems to have a limit. Experimenting with randomly chosen (positive) initial conditions, we see

again and again, that it seems to converge to the same number. Hence, completely based on

numerics, we are safe to make the following conjecture.

Random Conjecture: For any positive initial conditions x1, x2, x3, the terms of the sequence

satisfying the difference equation (1) converge to a certain algebraic number (that can be easily

found), whose floating-point value is 1.6358881124186260402 .

So far we only used numerical computations. Later on we will use symbolic computation to actually

prove it, either rigorously or semi-rigorously.

Experimenting with many other random cases, and several initial conditions, you get again and

again this phenomenon that the sequences seem to converge to the same number, let’s call it x̄,

i.e. that it is a global equilibrium. To find out its value, one replaces xn+1, xn, xn−1, . . . , xn−k+1

by x̄ getting a one-variable polynomial equation in x̄, asking Maple to solve it, and if all goes

well only getting one real and positive solution (of course, the resulting equation would have d+ 1

complex roots).

Let’s pick another random example, this time a third-order difference equation, and to make it

simpler, let’s have the numerator and denominator of degree 1. Typing

T:=RRDE(x,n,3,1,30);

yielded (this time)

xn+1 =
17 + 5xn + 24xn−1 + 16xn−2
23 + 4xn + 19xn−1 + 2xn−2

. (2)

Taking random initial conditions (in this case x1 = 11, x2 = 27, x3 = 37, and typing

L:=OrbD(T,x,n,evalf([11,27,37]),1000): L[-1],L[-2];

gives:
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1.37466571564383380885297479 . . . , 1.37466571564383380885297479 . . . ,

and similarly for many other randomly chosen initial conditions. To find the exact value of this

(so far conjectured) equilibrium point, solve

x̄ =
17 + 5x̄+ 24x̄+ 16x̄

23 + 4x̄+ 19x̄+ 2x̄
,

getting

x̄ =
17 + 45x̄

23 + 25x̄
,

that simplifies to the quadratic equation:

25x̄2 − 22x̄− 17 = 0 ,

whose roots are: [
11

25
+

√
546

25
,

11

25
−
√

546

25

]
,

that in decimals are:

[1.374665716,−0.4946657156] ,

discarding the negative root, we got the exact value, namely 11
25 +

√
546
25 .

The Amleh-Ladas Fascinating conjectures

Procedure RRDE artificially made all coefficients strictly positive, and hence it turns out that, gener-

ically, one gets rather boring limiting behavior, i.e. convergence to a unique positive equilibrium

point, or phrased otherwise, a limiting period-one solution.

In [1], Amal Amleh and Gerry Ladas made the following intriguing conjectures, that exhibited far

more interesting long-term behavior.

Conjecture 1: For any positive initial conditions x1, x2, x3,

xn+1 =
xn−1

xn−1 + xn−2
, n ≥ 3 ,

the sequence {xn} converges to a period-two solution of the form

. . . , φ , 1− φ , . . . ,

with 0 ≤ φ ≤ 1.

Conjecture 2: For any positive initial conditions x1, x2, x3,

xn+1 =
xn + xn−2
xn−1

, n ≥ 3 ,
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the sequence {xn} converges to a period-four solution of the form

. . . , φ , ψ ,
φ+ ψ2

φψ − 1
,
φ2 + ψ

φψ − 1
. . . ,

with φ, ψ ∈ (0,∞), and φψ > 1.

Conjecture 3: For any positive initial conditions x1, x2, x3,

xn+1 =
1 + xn−2

xn
, n ≥ 3 ,

the sequence {xn} converges to a period-five solution of the form

. . . , φ , ψ ,
1 + φ

φψ − 1
, φψ − 1 ,

1 + ψ

φψ − 1
. . .

with φ, ψ ∈ (0,∞), and φψ > 1.

Conjecture 4: For any positive initial conditions x1, x2, x3,

xn+1 =
1 + xn

xn−1 + xn−2
, n ≥ 3

The sequence {xn} converges to a period-six solution of the form

. . . , φ , ψ ,
φ

ψ
,

1

φ
,

1

ψ
,
φ

ψ
, . . . ,

with φ, ψ ∈ (0,∞).

We will later show how to prove these using symbolic computation, but for now, let’s confirm

them numerically, using procedure OrbD.

These difference equations are hard-coded in procedure LadadDB(x,n), that contains 15 interesting

difference equations, the first four, namely

LadasDB(x,n)[1] , LadasDB(x,n)[2] , LadasDB(x,n)[3] , LadasDB(x,n)[4],

correspond to the difference equations featured in the above four conjectures.

For example, typing

T:=LadasDB(x,n)[1]: evalf(OrbD(T,x,n,evalf([1,2,3]),1000)[-3..-1],10);

gives

[0.7012220196, 0.2987779809, 0.7012220196] ,

while
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T:=LadasDB(x,n)[1]: evalf(OrbD(T,x,n,evalf([11,25,34]),1000)[-3..-1],10);

yields

[0.9348089961, 0.06519100396, 0.9348089961] .

Readers are welcome to experiment with many other initial conditions, and similarly for the other

difference equations featured in Conjectures 2,3, and 4, to numerically (empirically) confirm these

intriguing conjectures. Of course this ‘only’ gives numerical confirmation (that the authors of [1]

must have already done, but probably using numerical software rather than Maple). We will later

see how to prove them either rigorously or semi-rigorously.

Recalling some basics and More Numerical Explorations

While it is highly non-trivial, in general, to prove that every choice of initial conditions will make

the solution sequence converge to an equilibrium, it is purely routine, today, to decide whether it

is true when the initial conditions are not too far from that equilibrium.

The first step (already recalled in [5]) is to convert a k-th order difference equation in (0,∞) to a

first-order difference equation in (0,∞)k.

The k-th order difference equation

xn+1 = F (xn, xn−1, . . . , xn−k+1)

becomes the transformation


x1
x2
. . .
xk

→


x2
x3
. . .
xk

F (xk, xk−1, xk−2, . . . , x1)

 .

From this point of view, the more general problem is to investigate whether, given a general rational

transformation from (0,∞)k into (0,∞)k of the form
x1
x2
. . .
xk

→

R1(x1, . . . , xk)
R2(x1, . . . , xk)

. . .
Rk(x1, . . . , xk)

 ,

where R1(x1, . . . , xk), . . . , Rk(x1, . . . , xk) are rational functions of their arguments. In order to

prove that x̄ is the limit of every solution of the original difference equation, one has to prove that

the orbit, starting at any point in (0,∞)k of the resulting transformation (as constructed above)

converges to (x̄, x̄, . . . , x̄).

Procedure Targem in the Maple package DRDS.txt converts a difference equation to a transforma-

tion.
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Recall that for any transformation x → F(x) in Rk, a point x0 is called an equilibrium point if it

is a fixed point.

F(x0) = x0 .

If the transformation is, like in our case, rational, this gives a system of k polynomial equations

with k unknowns, that at least, in principle, but often also in practice (for small k) is fully solvable

(in the realm of algebraic numbers, if all the coefficients are integers).

In order to generate random examples to experiment with, use procedure

RRT(x,k,d,A),

where x is a symbol, k is the dimension of the space, d is the degree of the numerator and the

denominator, and A is a positive integer, such that the coefficients are randomly chosen from

{1, 2, . . . , A}. For example,

T:=RRT(x,2,1,30); ,

might give [
18 + 20x1 + 24x2
11 + 19x1 + 25x2

,
26 + 29x1 + 28x2
29 + 14x1 + 18x2

]
.

To get all the fixed points (including complex and with negative coordinates), type

FP(T,x);

In this example, you would get a big mess, so let’s take the floating-point version, and type

evalf( FP(T,x),10);

getting

[[0.5983411214, -1.834086341], [1.100408318, 1.394961226], [-0.9483476940, 0.159782893],

[-100.8951386, 76.30710943]] .

We are only interested in points in (0,∞)2, so the only point that we are interested in is the second

one. To get such points with all positive coordinates right away, type

evalf( FPp(T,x),10);

getting, indeed,

{[1.100408318 . . . , 1.394961226 . . .]} .

We next ask whether it is locally stable. As is well-known, and fairly easy to see (e.g. [KL]),
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one computes the Jacobian matrix, then for each of the candidate points (those with positive

coordinates) plugs-it-in then computes the eigenvalues of this numerical matrix, and if all of them

have absolute value less than one, then we know for sure that the examined equilibrium point is

locally stable. This is an important first step before we can prove global stability, since every

globally stable fixed point must be, first of all, a local one.

Of course if there are more than one locally stable fixed points in (0,∞)k there is no hope that any

of them is global, but it is still nice to know all of them.

This is all done, thanks to Maple, automatically, with procedure LSFP(T,x).

For example, with the above T, we would get that this point is indeed locally stable. It also gives

you the (floating-point) versions of the eigenvalues (just for the record).

So typing

evalf(LSFP(T,x),10);

gives

{[[1.100408318, 1.394961226], [0.01399544579+0.07999899783 i, 0.01399544579−0.07999899783 i]]} ,

indicating that indeed there is only one locally stable fixed point of our transformation, and also

giving the eigenvalues.

Before trying to prove rigorously (that takes lots of effort!), or even semi-rigorously (that also takes

some effort, see below) it is very easy to conjecture whether there (most probably) is a globally

stable fixed point, and to actually find it. In fact, we don’t need to find the locally stable fixed

points. The completely numeric and empirical procedure

CoGSFP(T,x,K1,K2) ,

takes as input a transformation T and picks K2 random points in (0,∞)k, and for each of them

computes the orbit of length K1. If for each of these orbits the difference between the last two terms

is very small, and they all give the same point, we know non-rigorously, but (almost) certainly

that there is a globally stable fixed point, and we know its floating point version. To get its exact

value, as an algebraic number, you need FPp mentioned above.

The Proof Strategy

This is essentially what was done in [5], but with a new implementation, and with a semi-rigorous

option.

Suppose that we have a (rational) transformation, T , from (0,∞)k to (0,∞)k , and that we already

have ample empirical/numerical evidence that a certain candidate point, (gotten either from LSFP

or CoGSFP), x̄, is a globally stable fixed point of T in (0,∞)k.
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Our goal in life is to prove that for every initial point, x0 ∈ (0,∞)k,

lim
n→∞

Tn(x0) = x̄ .

Let |x| be the usual Euclidean norm. The above statement is equivalent to

lim
n→∞

|Tn(x0)− x̄|2 = 0 .

Suppose that we can come-up with a positive integer r, and some real α > 1, such that, for any

point x ∈ (0,∞)r, we have the inequality

α |T r(x)− x̄|2 ≤ |x− x̄|2 ,

then we know that this sequence of ‘distance-squared from the fixed point’ shrinks (by at least the

factor 1/α), every r-th iteration compared to what it was. This would automatically entail what

we want. Note that this is only a sufficient condition, and there is no a priori reason (that we know

of, at least), that such a real α > 1 and an integer r ≥ 1 exist, but if we are lucky enough to find

a candidate, and then, succeed in proving it, we are be done!

Again, we first investigate things numerically. We start with r = 1, and then see whether for

many initial points, the resulting orbit has the property that the distance-squared from x̄ shrinks

every r-th iteration. Once we get a successful candidate r ≥ 1, we have to prove it. For the

sake of definiteness, and not to clutter the Maple code with another parameter, we decided to take

α = 101
100 .

So we have to prove (either rigorously or semi-rigorously) that for any x ∈ (0,∞)k, we have the

inequality

α|T r(x)− x̄|2 ≤ |x− x̄|2 .

in other words

|x− x̄|2 − α|T r(x)− x̄|2 ≥ 0 .

Now the left-side is a (usually rather complicated) rational function of x1, . . . , xk, (recall that

x = (x1, . . . , xk)). Simplifying, we get a denominator that is a perfect square, and hence au-

tomatically positive. The numerator is a certain (usually complicated) polynomial, and everything

boils down to proving that this polynomial, let’s call it P (x1, . . . , xk), is non-negative. In other

words we need to minimize P in the region (0,∞)k and prove that it is ≥ 0 (in fact if it is ≥ 0 it

must be 0, since the value of the above left side is 0 when x = x̄).
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But this is a routine multivariable calculus exercise!, that Maple (and Mathematica, and Sage),

know how to do. Alas, in applications to our problems, this polynomial turns out to be too

complicated for k > 2, so we can rigorously prove global stability for k = 2, but it would take too

long (on our modest laptops) to do it for k ≥ 3. So we opt to do it numerically, checking it for

many random points, and since we know that there exists a way, at least in principle, to prove it

rigorously, why bother? This semi-rigorous approach to mathematical deduction was proposed by

one of us thirty years ago [9].

To get a fully rigorous proof, use procedure GSFPv(T,x,K);, where K is the maximum r we are

willing to take. That works well with two dimensions, but for higher dimensions, it takes way too

long. One should use instead GSFPvSR(T,x,K);, in order to get a semi-rigorous proof. If none is

found, it returns FAIL.

Sample output for proving (Rigorously and Semi-Rigorously Global Stability)

• If you want to see 20 theorems that state that certain second-order difference equations always

converge to the unique stable equilibrium, with fully rigorous proofs, look here:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oDRDS1.txt .

• If you want to see 10 theorems that state that certain third-order difference equations always

converge to the unique stable equilibrium, with semi-rigorous proofs, look here:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oDRDS2.txt .

• If you want to see 5 theorems that state that certain fourth-order difference equations always

converge to the unique stable equilibrium, with semi-rigorous proofs, look here:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oDRDS3.txt .

(Warning: the file is large!)

The Amleh-Ladas Conjectures

We now apply the proof strategy described above to the fascinating Amleh-Ladas conjectures.

Recall conjecture 1:

Conjecture 1: For any positive initial conditions x1, x2, x3,

xn+1 =
xn−1

xn−1 + xn−2
, n ≥ 3 ,

the sequence {xn} converges to a period-two solution of the form

. . . , φ , 1− φ , . . . ,

with 0 ≤ φ ≤ 1.
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To tackle this problem, we first view the sequence as a map from R3 to R3.

T : (x, y, z)→ (y, z,
y

x+ y
)

We hope to show that for any start point (x0, y0, z0) with x0, y0, z0 > 0, this dynamical system, T

converges to a point somewhere on the line segment parametrized by (t, 1− t, t), t ∈ [0, 1].

To measure how close points are to this line, we use the norm

v(x, y, z) = 1 + x2 + y2 + z2 − x− 2y − z + xy − xz + yz

. This is the square of the Euclidean distance from (x, y, z) to the line. To show that T converges

to a point with v-norm equal to 0, we consider the objective function

F (x, y, z) = v(x, y, z)− v(T (x, y, z))

If we can show that this objective function is always ≥ 0 for all positive (x, y, z), then we conclude

that applying T cannot increase the v-norm. Unfortunately this objective function is sometimes

negative for this particular T and v. To fix it, we replace T with T 3, three consecutive applications

of T . We also apply T to both points for smoothing. This gives

F (x, y, z) = v(T (x, y, z))− v(T 4(x, y, z))

.

It is now time to set maple to work and show that the objective function is nonnegative. We use

the function NLPSolve from the Optimization package, to minimize the objective function. This

function requires an initial point, and uses iterative methods to search for improvements on the

initial point using floating point arithmetic. The maple documentation for this function is given

here:

https://www.maplesoft.com/support/help/maple/view.aspx?path=Optimization%2FNLPSolve

We ran the solver with 36 different initial points and each time it returned that the minimum was

within an acceptable range (±10−6) of 0. This completes a semi-rigorous proof of Conjecture 1.

To run our code yourself, download the maple package AmalGerry.txt, and type:

run nlp(T4,v4,1,4,3); .

The first argument asks for the transformation on R3. T4 is the transformation T defined above;

the 4 is a reference to the fact that this transformation was equation 4 on the Amleh-Ladas paper.

The second argument is the norm to be used; v4 corresponds to T4. The third and fourth arguments

specify how many iterations of T should be applied to the initial point when creating the objective

function. The last argument determines the amount of different initial points that are tested.

We used this method to semi-rigorously prove conjectures 1 through 4. Take a look at the maple

package AmalGerry.txt for more details!
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Using Maple’s symbolic minimizer

The NLPSolve function is not a mathematical proof of minimization. Perhaps it could be made

into one by taking a very close look at the algorithm in the code, but this would be very tedious.

In this section we attempt to use maple’s built-in symbolic minimizer to produce a fully rigorous

proof of the minimization. The main limitation here is computational resources, so we experiment

with different norms and parameters.

Still looking at the T and v from the previous section, maple is not able to symbolically compute

the minimum of

F (x, y, z) = v(T (x, y, z))− v(T 4(x, y, z))

in a reasonable amount of time. Instead we define simpler norms

vxy = (x+ y − 1)2

vyz = (y + z − 1)2

Let

Fxy = vxy(x, y, z)− vxy(T 4(x, y, z))

The denominator of Fxy turns out to be

(xz + yz + y)2(y + z)2

which is never negative! Thus we just instruct maple to minimize the numerator, which is a degree

8 polynomial in the variables x, y, z. Maple symbolically computes that the minimum of this

polynomial is 0, so we have a rigorous proof that T converges to a point with vxy norm equal to 0.

The same process works for vyz. The only points where vxy and vyz are both 0 is exactly the line

(t, 1− t, t). This completes a rigorous mathematical proof of Conjecture 1. The authors attempted

to use a similar approach for the other conjectures however we lacked the computational resources

to execute the code.

Periodic Difference Equations

As mentioned in [1] (p. 71), and [KL] (p. 628), the following (second-order) Lynnes difference

Equation

xn+1 =
1 + xn
xn−1

always has period five, regardless of the initial conditions. This is easily confirmed with our Maple

package:

Entering:
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OrbD((1+x[n])/x[n-1],x,n,[a,b],5);

immediately gives [
a, b,

1 + b

a
,
a+ 1 + b

ab
,
a+ 1

b
, a, b

]
,

meaning that for symbolic, i.e. general, initial conditions, things get repeated every five iterations.

Of course this is easy enough to do by hand.

Also mentioned in [KL] (p. 628, Eq. (25) there), that the following (third-order) difference equation

xn+1 =
1 + xn + xn−1

xn−2
,

is always of period eight, regardless of the initial conditions. Indeed, typing:

OrbD((1+x[n]+x[n-1])/x[n-2],x,n,[a,b,c],8);

yields[
a, b, c,

1 + c+ b

a
,
ca+ a+ b+ c+ 1

ab
,
ab+ ca+ b2 + bc+ a+ 2b+ c+ 1

abc
,
ca+ a+ b+ c+ 1

bc
,
a+ 1 + b

c
, a, b, c

]
.

This gave us the hope that the fourth-order difference equation

xn+1 =
1 + xn + xn−1 + xn−2

xn−3
,

is perhaps periodic? Alas, entering

L:=OrbD((1+x[n]+x[n-1]+x[n-2])/x[n-3],x,n,[1,1,1,1],1000): member(1,op(5..nops(L),L));

gives false, meaning, that if there is a period, it would be larger than 1000, so this difference

equation is unlikely to be periodic.

It would be very interesting to discover such rational difference equations with higher periods, that

do not trivially follow from the known ones by ‘merging’.

Automated Discovery of Invariants that Imply that Every Solution is Bounded

In the Kulenovic-Ladas fascinating book [KL], it is mentioned that the generalized Lynnes

Equation

xn+1 =
p+ xn
xn−1

,

14



for any positive p has the following invariant:

In = (p+ xn−1 + xn)

(
1 +

1

xn−1

)(
1 +

1

xn

)
.

We could have found it, ab initio, using procedure FindInv:

FindInv((p+x[n])/x[n-1],x,n,2,3);

We were able to find invariants for the higher-order difference equations

xn+1 =
p+ xn + xn−1 + . . .+ xn−k+2

xn−k+1
,

for k ≤ 8. They do get more and more complicated, see the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oDRDS6.txt .

They all turn out to have positive coefficients. As noted in [KL] for the generalized Lynnes equation,

but is also true in general, the existence of an invariant of the form

P (xn, xn−1, . . . , xn−k+1)

xnxn−1 . . . xn−k+1
= Constant ,

with the coefficients of P all positive (all the ones we found were of that form) immediately implies

that for any positive initial conditions, the solution sequence is always bounded.

In fact, for the generalized Lynnes equation xn+1 = p+xn

xn−1
, one can use discriminants to predict,

a priori, these lower and upper bounds, for any positive p and any positive initial conditions

x1 = a1, x2 = a2. See the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oDRDS4.txt .

For the analogous third-order difference equation xn+1 = p+xn+xn−1

xn−2
, see:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oDRDS5.txt .

Conclusion

Using the great human-generated theory developed by Saber Elaydi, Gerry Ladas, and their many

collaborators and disciples, and bringing into the game both numeric and symbolic computation,

we hope that we demonstrated the power of computer-kind to extend the human efforts. Alas,

even computers have their limits, and we advocate that often a semi-rigorous proof suffices, as first

preached in 1993 in [9].
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