
Computing the Generating Function of a C-finite sequence

Dr. Z.

Input: A C-finite sequence a(n) that is a solution of a (homogeneous) linear recurrence equa-

tion with constnt coefficient

a(n) = R1a(n− 1) + . . . + Rda(n− d) ,

subject to the initial conditions

a(0) = a0, . . . , a(d− 1) = ad−1 .

Note: this ‘infinite’ sequence is a finite object, and we represent it in class as a pair of lists

[INI,REC] where

INI = [a0, . . . , ad−1] , REC = [R1, . . . , Rd] .

The (ordinary) generating function of a sequence a(n), 0 ≤ n <∞ is, by definition

f(x) =

∞∑
n=0

a(n)xn .

How to go from the C-finite description to the generating function

For n ≥ d we have

a(n) = R1a(n− 1) + . . . + Rda(n− d) ,

Hence

f(x) =

∞∑
n=0

a(n)xn =

d−1∑
n=0

a(n)xn +

∞∑
n=d

a(n)xn

=

d−1∑
n=0

a(n)xn +

∞∑
n=d

(R1a(n− 1) + R2a(n− 2) + . . . + Rda(n− d))xn .

Distributing, we have

f(x) =

d−1∑
n=0

a(n)xn

+

∞∑
n=d

R1a(n− 1)xn +

∞∑
n=d

R2a(n− 2)xn + . . . +

∞∑
n=d

Rda(n− d)xn .

Rewritng: we get

f(x) =

d−1∑
n=0

a(n)xn

1



+R1x
∞∑

n=d

a(n− 1)xn−1 + R2x
2
∞∑

n=d

a(n− 2)xn−2 + . . . + Rdx
d
∞∑

n=d

a(n− d)xn−d .

Changing the index of summation we get

f(x) =

d−1∑
n=0

a(n)xn

+R1x

∞∑
n=d−1

a(n)xn + R2x
2
∞∑

n=d−2

a(n)xn + . . . + Rdx
d
∞∑

n=0

a(n)xn .

It follows that

f(x) = POLY NOMIALd−1(x) + (R1x + dots + Rdx
d)f(x)

where POLY NOMIALd−1(x) is some polynomial of degree d− 1. Hence

f(x)(1− (R1x + dots + Rdx
d)) = POLY NOMIALd−1(x) ,

and hence

f(x) =
POLY NOMIALd−1(x)

)(1− (R1x + dots + Rdxd))
.

This explains why f(x) is always a rational function, why its denominator is what it is. As for the

numerator, the best way is to find it empirically as we did in class.
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