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ABSTRACT

Many combinatorial sequences (e.g. the Catalan and the Motzkin
numbers) may be expressed as the constant term of P(x)kQ(x), for
some Laurent polynomials P(x) andQ(x) in the variable x with integer
coefficients. Denoting such a sequence by ak , we obtain a general
formula that determines the congruence class, modulo p, of the

indefinite sum
∑rp−1

k=0 ak , for any prime p, and any positive integer
r, as a linear combination of sequences that satisfy linear recurrence
(alias difference) equations with constant coefficients. This enables
us (or rather, our computers) to automatically discover and prove
congruence theorems for such partial sums. Moreover, we show that
in many cases, the set of the residues is finite, regardless of the
prime p.
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1. Introduction

Let {ak} be a sequence of integers, and r be a positive integer.We focus on the congruences
of the partial sum

∑rp−1
k=0 ak modulo a general prime p. When ak is a hypergeometric term

and r = 1we get a truncated hypergeometric series, which is closely related to theGaussian
hypergeometric series introduced by Greene [3]. An interesting example is the congruence
for the Apéry numbers [1,2]

A
(
p − 1
2

)
≡

p−1∑
k=0

(
2k
k

)4
2−8k ≡ γ (p) (mod p),

where

A(n) =
n∑

j=0

(
n + j
j

)2(n
j

)2
,

and
∞∑
n=1

γ (n)qn = q
∞∏
n=1

(1 − q2n)4(1 − q4n)4.

CONTACT Doron Zeilberger zeilberg@math.rutgers.edu
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D
ow

nl
oa

de
d 

by
 [

Q
in

g-
H

u 
H

ou
] 

at
 2

0:
09

 0
5 

M
ar

ch
 2

01
6 

http://www.tandfonline.com


2 W. Y. C. CHEN ET AL.

These congruences are usually obtained case by case and the proofs are complicated.
For example, Pan and Sun [5] used a sophisticated combinatorial identity to deduce that

p−1∑
k=0

(
2k

k + d

)
≡
(
p − d
3

)
(mod p), d = 0, 1, . . . , p,

where
( ·

·
)
is the Legendre symbol.We propose an automatedmethod to discover and prove

such congruences for a large family of combinatorial sequences {ak}. More precisely, we
assume that ak is the constant term of P(x)kQ(x) where P(x) and Q(x) are two Laurent
polynomials in the (single) variable x with integer coefficients. Rowland and Zeilberger
[6] discovered an algorithm to automatically generate automata for determining the
congruences, modulo a prime p, of combinatorial sequences (not the partial sums) but
for specific primes p (one at a time).

Throughout the paper, p always denotes a prime number. We write a ≡p b if a is
congruent to b modulo p. For a Laurent series f (x) = ∑

k≥k0 akx
k, we use CT f (x) to

denote the coefficient of the free term, x0. The set of integers, rational numbers and
complex numbers are denoted by Z,Q and C, respectively. The finite field with p elements
is denoted by Fp.

2. Evaluation

In this section, we show that the above-mentioned partial sums are linear combinations
of C-finite sequences, i.e. integer sequences that satisfy a linear recurrence equation with
constant coefficients (like 2n and the Fibonacci numbers, to name two examples). This
would enable us (and our computers) to discover and prove practically infinitely many
theorems about the congruences of such partial sums modulo an arbitrary (symbolic!)
prime p.

We have the following formula for the congruences of the partial sums.
Theorem 2.1: Let P(x),Q(x) be two Laurent polynomials in x with integer coefficients and

ak := CT P(x)kQ(x).

Let −m and −n be the lowest degrees of P(x) and Q(x)/(P(x) − 1), respectively. Then for
any positive integer r, and any prime p > n, we have

rp−1∑
k=0

ak ≡p

rm∑
j=0

cjS(rm−j)p , (2.1)

where cj is the coefficient of x−rm+j in P(x)r − 1 and Sk is the coefficient of xk in the Laurent
expansion of

Q(x)
P(x) − 1

.
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 3

Proof: Noting that CT is a linear operator, we have

rp−1∑
k=0

ak = CT
rp−1∑
k=0

P(x)kQ(x) = CT
(P(x)rp − 1)Q(x)

P(x) − 1
.

Since the coefficients of P(x) are integers, we have, (by the “Freshman’s Dream Identity” ,
(a + b)p ≡p ap + bp), P(x)p ≡p P(xp) and hence

rp−1∑
k=0

ak ≡p CT
Q(x)(P(xp)r − 1)

P(x) − 1
.

By the definition ofm and cj, we see that

P(x)r − 1 =
N∑
j=0

cjx−rm+j,

for some integer N . If j > rm, we have

( − rm + j)p − n > n( − rm + j) − n ≥ 0,

which implies that

CT
Q(x)x(−rm+j)p

P(x) − 1
= 0.

Hence

CT
Q(x)(P(xp)r − 1)

P(x) − 1
=

rm∑
j=0

cjCT
Q(x)x(−rm+j)p

P(x) − 1
=

rm∑
j=0

cjS(rm−j)p.

This completes the proof. �
This theorem is implemented in the Maple package CTcong.txt available from the

webpage http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/ctcong.html
where the user can also find sample input and output files.

The Maple command-line is

TheoG(P, Q, x, p, C, r),

where P,Q are two Laurent polynomials, with integer coefficients, in the variable x, p
is the symbol standing for the prime, C is the name for the sequence of coefficients of
Q(x)/(P(x) − 1), while r is as in Equation (2.1). For example, typing (in a Maple session,
after reading our Maple package CTcong.txt)

TheoG(1/x+2+x, xˆ d, x, p, C, 1);

immediately outputs
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4 W. Y. C. CHEN ET AL.

Corollary 2.2: Let A(i) be the constant term of the Laurent polynomial

xd
(
1
x

+ 2 + x
)i

,

and for any prime p, let

B(p) =
p−1∑
i=0

A(i).

Then
B(p) ≡p C(p),

where C(n) is the C-finite sequence defined in terms of the generating function

∞∑
i=0

C(i)xi = xd+1

x2 + x + 1
.

Noting that

CT xd
(
1
x

+ 2 + x
)i

=
(

2i
i − d

)
=
(

2i
i + d

)
,

and
xd+1

x2 + x + 1
= xd+1(1 + x3 + x6 + · · · − x − x4 − x7 − · · · ),

Corollary 2.2 is equivalent to the congruence relation given by Pan and Sun

p−1∑
k=0

(
2k

k + d

)
≡p

(
p − d
3

)
.

[Of course this case, and many other ones, for small r, are easily humanly generated.]
Using this approach, we found many congruences, including the congruences for the

sums of generalized central trinomial coefficients that were considered by Sun [7].
When Q(x)/(P(x) − 1) is a rational function such that every root of the denominator

is a root of unity, the coefficient of xk in Q(x)/(P(x) − 1) can be expressed as a quasi-
polynomial in k. We can search for this quasi-polynomial by the method of undetermined
coefficients and thus derive theorems presenting explicit forms for the congruences. This
is implemented by the procedure TheoQP in our Maple package CTcong.txt. The
command-line is

TheoQP(P, Q, x, p, r, d) ,

where P,Q are the two Laurent polynomials in x, p is the symbol standing for the prime,
r is as above, and d is the expected degree of the searched quasi-polynomial. (In practice,
you start, optimistically, with d = 0, and if it fails, you keep increasing d to 1, then 2, until
you either find something, or give up.)

For example, typing

TheoQP(1/x+2+x, 1, x, p, 2, 0);

yields
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 5

Corollary 2.3:
2p−1∑
k=0

(
2k
k

)
≡p

{
3, if p ≡ 1 (mod 3),
−3, if p ≡ 2 (mod 3).

For more examples, we refer to the webpage http://www.math.rutgers.edu/~zeilberg/
mamarim/mamarimhtml/ctcong.html.

3. Reduction

In this section, we consider a further reduction of the coefficients Sp, S2p, . . . in Equation
(2.1). We find that in some cases, the set {Sp mod p} of residues is a finite subset of Q
when p runs over all primes.

First, let us consider the coefficients Sk given by

ux + v
a + bx + cx2

=
∞∑
k=0

Skxk,

whereu, v, a, b, c are integers, a �= 0 and a+bx+cx2 is irreducible overQ. Let� = b2−4ac
be the discriminate of ax2 + bx + c. Since a + bx + cx2 is irreducible, � �= 0, and hence
� �≡p 0 except for finitely many primes p.

If � is a square in the finite field Fp, then a + bx + cx2 is reducible in Fp so that

ux + v
a + bx + cx2

≡p
A

1 − αx
+ B

1 − βx
,

for some A,B,α,β ∈ Fp. We thus find that

Srp = Aαrp + Bβrp ≡p Aαr + Bβr = Sr .

If � is not a square in Fp, then a + bx + cx2 is irreducible in Fp. Let us consider the
extension field Fp(α) with aα2 + bα + c = 0 and α ∈ C. Let β ∈ C be another root of the
equation ax2 + bx + c = 0. By the property of the Frobenius automorphism [8], it follows
that in the extension field Fp(α),

αp = β , βp = α.

Hence in the field Fp(α), we have

Srp = Aαrp + Bβrp = Aβr + Bαr = cr

ar
(
Aα−r + Bβ−r) = cr

ar
S−r ,

where S−r is determined by the initial values S0, S1 and the recurrence relation

aSn + bSn−1 + cSn−2 = 0, n ∈ Z.

Since Srp and S−r are both rational numbers, we obtain that Srp ≡p
cr
ar S−r .
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6 W. Y. C. CHEN ET AL.

In general, let q(x) be an irreducible polynomial in Z[x] of degree d with non-zero
constant term and α1, . . . ,αd be the d roots of xdq(1/x) in C. If the splitting field
Q(α1, . . . ,αd) equals Q(αj) for some 1 ≤ j ≤ d, we say that q(x) is simple. Clearly,
every irreducible polynomial of degree 2 is simple.

We have the following finiteness theorem regarding the congruences.
Theorem 3.1: Let P(x),Q(x) be two Laurent polynomials in x with integer coefficients and

ak = CT P(x)kQ(x).

Suppose that each irreducible factor q(x) �= x of the denominator of Q(x)/(P(x) − 1) is
simple. Then there exists a finite subset A of Q such that for any prime p,

rp−1∑
k=0

ak ≡p a,

for some a ∈ A.
Proof: By Theorem 2.1, for a sufficiently large prime p,

∑rp−1
k=0 ak modulo p is a linear

combination of S0, Sp, S2p, . . ., where Sk is the coefficient of xk in the series

R(x) = Q(x)
P(x) − 1

.

To prove the theorem, it suffices to show that for a fixed integer n, the set

⋃
p

{Snp mod p}

of residues is finite when p runs over all primes.
Consider the partial fraction decomposition of R(x) over Q

R(x) = g(x) +
m∑
i=1

hi(x)
qi(x)�i

,

where g(x) is a Laurent polynomial over Q and for each i = 1, . . . ,m, qi(x) ∈ Z[x]
is irreducible and hi(x) ∈ Z[x] is a polynomial with deg hi(x) < deg qi(x). In order to
prove the finiteness of the set ∪p{Snp mod p}, it suffices to show that the residues of the
coefficients of each summand form a finite set.

Let h(x)/q(x)� be one summand and

∞∑
k=0

skxk = h(x)
q(x)�

.

Let q̃(x) = xdq(1/x) where d = deg q(x) and let α1, . . . ,αd be the roots of q̃(x). By
assumption, we have Q(α1, . . . ,αd) = Q(α) with α ∈ {α1, . . . ,αd}. Denote the splitting
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 7

field Q(α) by K . Since q(x) is irreducible, we have

K =
{
a0 + a1α + · · · + ad−1α

d−1

b
: a0, . . . , ad−1, b ∈ Z

}
.

Let p be a prime larger than the maximal irreducible factor of the leading coefficient of
q̃(x). Then

Kp :=
{
a0 + a1α + · · · + ad−1α

d−1

b
: p � b

}
⊂ K

form a subring of K . There is a natural ring homomorphism τ : Kp → Fp[x]/〈q̃(x)〉 given
by

τ

(
a0 + a1α + · · · ad−1α

d−1

b

)
= a0b−1 + a1b−1x + · · · + ad−1b−1xd−1.

Clearly, the kernel of the map τ is pKp.
It is well-known that the coefficients sk can be expressed as

sk =
d∑

i=1

fi(k)αk
i ,

where fi(k) is a polynomial over Q(α) of degree less than �. It is easy to see that

τ(fi(np)) = τ(ci),

where ci is the constant term of fi(x). Since q̃(x) ∈ Z[x], for each i = 1, . . . , d, we have

q̃(τ (α
p
i )) = τ

(
q̃(αp

i )
) = τ

(
(q̃(αi))

p) = 0.

Hence τ(α
p
i ) = τ(αj) for some 1 ≤ j ≤ d. Let σ be the map given by τ(α

p
i ) = τ(ασ(i)).

We thus have

τ(snp) =
d∑

i=1

τ(ci)τ (αn
σ(i)) = τ

( d∑
i=1

ciαn
σ(i)

)
.

Let
d∑

i=1

ciαn
σ(i) = r0 + r1α + · · · + rd−1α

d−1.

Since τ(snp) ∈ Q, we have
τ(snp) = τ(r0),

and hence snp ≡p r0. Noting that there are only finitely many choices for σ , hence the set
∪p{snp mod p} is finite. �
Example: Suppose that

P(x) = x3 − 2x + 1
x

, and Q(x) = 1.
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8 W. Y. C. CHEN ET AL.

We have
Q(x)

P(x) − 1
= x

x3 − 3x + 1
.

Let
α = −0.532 . . . , β = 0.6527 . . . , γ = 2.879 . . .

be the three roots of x3 − 3x2 + 1. Using the approximate values of the three roots, we may
use the LLL algorithm [4] to find integral relations among β , γ and powers of α. Using
Maple, we get two possible relations

β = 2 + 2α − α2, γ = 1 − 3α + α2. (3.1)

It is easy to verify that

(2 + 2α − α2)3 − 3(2 + 2α − α2)2 + 1 = 0,

and
(1 − 3α + α2)3 − 3(1 − 3α + α2)2 + 1 = 0.

It follows that 2 + 2α − α2 and 1 − 3α + α2 are roots of x3 − 3x2 + 1. So we obtain
the relations in (3.1). Therefore, Q(α,β , γ ) = Q(α) and hence x3 − 3x + 1 is simple. By
Theorem 3.1, the set ⎧⎨

⎩
2p−1∑
k=0

CT P(x)k mod p

⎫⎬
⎭

is finite. In fact, when p > 3, the only possibilities of the residues are −1 and 2.
We conclude with an example where the denominator is not simple.

Example: Let

P(x) = −2x2 + 1 + 1
x
, Q(x) = 1.

Then
Q(x)

P(x) − 1
= x

1 − 2x3
= x + 2x4 + 22x7 + · · · .

Hence for p ≡ 1 (mod 3), we have

p−1∑
k=0

CT P(x)k ≡p 2
p−1
3 .

It seems that the set {2 p−1
3 mod p} is not finite.
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