A combinatorial proof of Cramer's Rule

Doron ZEILBERGER

Dedicated to my Rutgers colleague Antoni A. Kosinski (b. May 25, 1930) who proved that Cramer's Rule is indeed due to Cramer.

Prerequisites: We assume that readers are familiar with the notions of : *integer* (e.g. 3, 11), set (e.g. $\{1,2,3\}$), addition (of numbers or symbols) (e.g. $a + b$), multiplication (e.g. bc), and ">, =, <, \leq , \geq ". Two symbols a and b commute if ab = ba. All the symbols in this paper commute. No other knowledge is needed!

Notation: If w is a weight defined on a set S (i.e. a way of assigning a number, or algebraic expression to members of S), then $w(S) := \sum_{s \in S} w(s)$. For example if $S = \{1, 4\}$, $w(1) = a$, $w(4) = b$, then $w({1, 4}) = a + b$.

Definitions

• For any positive integer n, an n-permutation is a list of integers $\pi = \pi_1 \dots \pi_n$, where $1 \leq \pi_i \leq n$ for all $1 \leq i \leq n$ and $\pi_i \neq \pi_j$ if $i \neq j$.

• The set of all *n*-permutations is denoted by S_n . For example, $S_3 = \{123, 132, 213, 231, 312, 321\}.$

• For an *n*-permutation $\pi = \pi_1 \dots \pi_n$, a pair (i, j) , where $1 \leq i < j \leq n$, is an *inversion* if $\pi_i > \pi_j$. For example, If $\pi = 51423$ then $(1, 2), (1, 3), (1, 4), (1, 5), (3, 4), (3, 5)$ are inversions of π . Let $inv(\pi)$ be the number of inversions, for example $inv(51423) = 6$.

• Let *n* be a positive integer, and let $a_{i,j}$ ($1 \le i, j \le n$) and b_i ($1 \le i \le n$) be $n^2 + n$ commuting symbols (or numbers). Define $n+1$ weights w_j $(0 \le j \le n)$ on S_n as follows:

$$
w_0(\pi) := (-1)^{inv(\pi)} \prod_{1 \le k \le n} a_{\pi_k, k} ,
$$

$$
w_j(\pi) := (-1)^{inv(\pi)} b_{\pi_j} \prod_{\substack{1 \le k \le n \\ k \ne j}} a_{\pi_k, k} \quad (1 \le j \le n) .
$$

Theorem (Cramer [C]): Let

$$
X_j := w_j(S_n) \quad (0 \le j \le n) \quad ,
$$

then

$$
x_j := \frac{X_j}{X_0} \quad (1 \le j \le n) \quad ,
$$

satisfy the n linear equations

$$
\sum_{j=1}^{n} a_{i,j} x_j = b_i \quad (1 \le i \le n) \quad . \tag{C_i}
$$

Combinatorial Proof: By multiplying (C_i) by X_0 , we have to prove

$$
\sum_{j=1}^{n} a_{i,j} X_j = b_i X_0 \quad (1 \le i \le n) \quad . \tag{C'_i}
$$

For any positive integer n, let F_n be the following set (with $n \cdot n!$ members, where $n! := 1 \cdot 2 \cdots n$)

$$
F_n := \{ [j, \pi] \, ; \, 1 \le j \le n \quad , \quad \pi \in S_n \} \quad .
$$

For any i $(1 \leq i \leq n)$, define a weight W_i on F_n as follows:

$$
W_i([j,\pi]) := a_{i,j} w_j(\pi) = a_{i,j} (-1)^{inv(\pi)} b_{\pi_j} \prod_{\substack{1 \le k \le n \\ k \ne j}} a_{\pi_k,k}.
$$

The left side of (C_i') is $W_i(F_n)$.

Definition: $[j, \pi] \in F_n$ is an *i-good guy* if $\pi_j = i$, otherwise it is an *i-bad guy*. Let $G_{n,i}$ and $B_{n,i}$ be the subsets of F_n consisting of the *i*-good guys and *i*-bad guys respectively.

Obviously, since $F_n = G_{n,i} \cup B_{n,i}$, we have

$$
W_i(F_n) = W_i(G_{n,i}) + W_i(B_{n,i}) .
$$

Fact 1:

$$
W_i(G_{n,i}) = b_i X_0
$$

Proof of Fact 1: If $[j, \pi] \in F_n$ is a good guy then, since $\pi_j = i$, we have:

$$
W_i([j, \pi]) = (-1)^{inv(\pi)} a_{i,j} b_{\pi_j} \prod_{\substack{1 \le k \le n \\ k \ne j}} a_{\pi_k, k}
$$

= $(-1)^{inv(\pi)} a_{\pi_j, j} b_i \prod_{\substack{1 \le k \le n \\ k \ne j}} a_{\pi_k, k} = (-1)^{inv(\pi)} b_i \prod_{1 \le k \le n} a_{\pi_k, k} = b_i w_0(\pi)$.

Hence $W_i(G_{n,i}) = b_i w_0(S_n) = b_i X_0$.

Fact 2:

$$
W_i(B_{n,i}) = 0 .
$$

Proof of Fact 2: Let $[j, \pi] \in F_n$ be an *i*-bad guy. Let $a := \pi_j$ and $j' := \pi^{-1}(i)$. Of course $a \neq i$ and $j' \neq j$. Define a permutation σ by transposing $\pi_j = a$ and $\pi_{j'} = i$, in other words $\sigma_j = i$, $\sigma_{j'} = a$ and $\sigma_k = \pi_k$ if $k \notin \{j, j'\}$. Let

$$
T_i([j,\pi]) := [j',\sigma] .
$$

We have

$$
W_i([j, \pi]) = (-1)^{inv(\pi)} a_{i,j} b_a \prod_{\substack{1 \le k \le n \\ k \ne j}} a_{\pi_k, k} = (-1)^{inv(\pi)} a_{i,j} b_a a_{\pi_{j'},j'} \prod_{\substack{1 \le k \le n \\ k \ne j,j'}} a_{\pi_k, k}
$$

= $(-1)^{inv(\pi)} a_{i,j} b_a a_{i,j'} \prod_{\substack{1 \le k \le n \\ k \ne j,j'}} a_{\pi_k, k}$.

Similarly

$$
W_i([j', \sigma]) = (-1)^{inv(\sigma)} a_{i,j'} b_a \prod_{\substack{1 \le k \le n \\ k \ne j'}} a_{\sigma_k, k} = (-1)^{inv(\sigma)} a_{i,j'} b_a a_{\sigma_j, j} \prod_{\substack{1 \le k \le n \\ k \ne j, j'}} a_{\sigma_k, k}
$$

= $(-1)^{inv(\sigma)} a_{i,j'} b_a a_{i,j} \prod_{\substack{1 \le k \le n \\ k \ne j, j'}} a_{\sigma_k, k}$.

Since $inv(\pi) - inv(\sigma)$ is odd (why?), and π_k and σ_k coincide if $k \notin \{j, j'\}$, we have, by *commutativity*, that for any *i*-bad guy *b*, $W_i(b) + W_i(T_i(b)) = 0$.

Since $T_i(T_i(b)) = b$ for all *i*-bad guys b (why?), all the bad guys can be arranged into mutually W_i -canceling pairs, proving Fact 2. \Box

Combining Facts 1 and 2, (C_i') , and hence Cramer's Rule, follow.

Comments: 1. There are several 'short' proofs of Cramer's rule that can be found in Wikipedia and its references, but they all assume knowledge of linear algebra. Our proof is fully self-contained, and does not assume *anything* besides the prerequisites listed at the beginning. We believe that if you include all the necessary background, our proof is the shortest.

2. For a fascinating defense of Gabriel Cramer's priority for his rule, see Antoni Kosinski's article [K].

References

.

[C] Gabriel Cramer, "Introduction l'Analyse des lignes Courbes algébriques" Geneva (1750). pp. 656-659.

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/cramerCramer1750.pdf

[K] A. A. Kosinski, Cramer's Rule is due to Cramer, Mathematics Magazine 74 (2001), 310-312. https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/cramerKosinski2001.pdf

Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. Email: DoronZeil at gmail dot com .

Aug. 18, 2024.

Exclusively published in the Personal Journal of Shalosh B. Ekhad and Doron Zeilberger and arxiv.org