How Many Singles, Doubles, Triples, Etc., Should The Coupon Collector Expect?

Doron ZEILBERGER ${ }^{1}$

There are m equi-probable baseball cards placed at random in chewing gums. It is well known and easy to see that a collector should expect to buy $m(1+1 / 2+1 / 3+\ldots+1 / m)$ gums before acquiring all the kinds of cards. At the end, he would have some singles, some doubles, some triples, etc. Let $A(m, i)$ be the expected number of kinds of cards of which he has exactly i copies of. Here I give a short proof of:

Formula (Foata-Han-Lass[1]): $\sum_{i=1}^{\infty} A(m, i) t^{i}=t-1+m!/ \prod_{j=2}^{m}(j-t)$.
Proof: Let's number the (kinds of) cards, in order of first arrival by $1,2, \ldots m$. The purchased cards define a word given by the regular expression $11^{*} 2\{1,2\}^{*} 3\{1,2,3\}^{*} 4 \ldots\{1,2, \ldots, m-1\}^{*} m$, whose (probability) generating function is

$$
f\left(x_{1}, \ldots, x_{m}\right)=\frac{x_{m}}{m} \prod_{j=1}^{m-1} \frac{x_{j}}{m-\left(x_{1}+\ldots+x_{j}\right)}
$$

Let a marked word be a pair $[w, i]$ where w is a word that is an instance of the above regular expression, and $1 \leq i \leq m$. By the familiar trick of computing expectations by changing the order of summation, it follows that the left side of the Foata-Han-Lass formula is the sum of the weights of all eligible marked words, where weight $([w, i]):=(1 / m)^{|w|}$ times t raised to the power [the number of times the letter i occurs in w]. For example, if $m=3$ and $\mathrm{w}=1111211213$, then $\operatorname{weight}([w, 1])=(1 / 3)^{10} t^{7}$, weight $([w, 2])=(1 / 3)^{10} t^{2}$, weight $([w, 3])=(1 / 3)^{10} t$. Hence $\sum_{i=1}^{\infty} A(m, i) t^{i}=m!\sum_{i=1}^{m} f_{i}$ (the factor of $m!$ is to account for all possible orderings), where f_{i} is f with all the x 's replaced by 1 , except for x_{i} that is replaced by t. But

$$
f_{m-i}=\frac{1}{m} \prod_{j=1}^{m-i-1} \frac{1}{m-j} \cdot \frac{t}{i+1-t} \cdot \prod_{j=m-i+1}^{m-1} \frac{1}{m-j+1-t}=\frac{i!t}{m!(2-t)(3-t) \cdots(i+1-t)}
$$

when $i>0$ and $f_{m}=t / m$!. Hence

$$
\sum_{i=1}^{\infty} A(m, i) t^{i}=t+t \sum_{i=1}^{m-1} \frac{i!}{(2-t)(3-t) \cdots(i+1-t)}=t+\frac{m!}{(2-t)(3-t) \ldots(m-t)}-1
$$

Reference

1. D. Foata, G.-N. Han, et B. Lass, Les nombres hyperharmoniques et la fratrie du collectionneur de vignettes, preprint, available from Foata's website.
[^0]
[^0]: 1 Department of Mathematics, Temple University, Philadelphia, PA 19122, USA. zeilberg@math.temple.edu http://www.math.temple.edu/~zeilberg/ . July 5, 2001 Supported in part by the NSF.

