
Using Symbolic Computation to analyze the ”Count Your Chickens!” Board Game

Shalosh B. EKHAD and Doron ZEILBERGER

Abstract. In a delightful recent article that appeared in Mathematics Magazine, David and Lori

Mccune analyze the board game ”Count Your Chickens!”, recommended to children three and up.

Alas, they use the advanced theory of Markov chains, that presupposes a knowlege of linear algebra,

that few three-years-olds are likely to understand. Here we present a much simpler, more intuitive,

approach, that while unlikely to be understood by three-year-olds, will probably be understood by

a smart 14-year-old. Moreover, our approach accomplishes much more, and is more efficient. It

uses symbolic, rather than numeric computation. The article is accompanied by a general Maple

package, CountChickens.txt, that can handle, in a few seconds, any such game, not just this

particular one.

The Maple package. This article is accompanied by a Maple package CountChickens.txt that

can be obtained, along with an input and output file, from the front of this article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/countchicks.html .

The Count Your Chickens! board game

The games ”Snakes and Ladders” (that became ”Chutes and Ladders” in the USA, since snakes

are too scary) is too stressful for the gentel soul of a typical three-year-old. Hence CandyLand

that involves picking colored cards, rather than spinning a spinner, is not recommended, since

it is competitive, there being a winner and loser, and three-years-old (and not only) hate to lose,

making them cry. Hence game inventor, Peggy Brown came up with a fun, stress-free, ‘cooperative’

game for kids, where there is only one team and ‘everyone wins together and loses together’ (so

it is really a solitaire game) called ”Count Your Chickens!” manufactured and marketed by the

Peaceable Kingdom toy company.

In a delightful article that appeared recently in Mathematical Magazine, the mathematical couple

David and Lori Mccune, who play this game with their young children, use the sophisticated theory

of Markov Chains, that entails a knowledge of matrices, and matrix inverses to compute the proba-

bility of winning, and the expcted number of chicks at the end. They got 0.6410 for the probability

and 39.22 for the expected number of chicks (see below). Our, simpler, faster, and more efficient

approach agrees with their probability, but gave the more precise value of 0.6410373996231 . . ., and

got a slightly higher value for the expected number of chicks, namely 39.32230439142343 We

believe that they had a typo.

One of us (DZ) wrote a Maple package CountChickens.txt, mentioned above, that can handle,

very fast, any such kind of tame. So let us first define an ‘abstract’ Count Your Chickens! game.

Let N and K be two positive integers.

1

The game consists of

• a board with 1 + N squares where the 0-th location is the starting place of Mama Chicken and

N is the terminal square. Each square is either empty or labelled with of K animals.

• a spinner with K + 1 choices, all equally likely, labelled by the K farm animals, plus an extra

one called the Fox.

• a subset of {1, . . . , N} called the set of blue squares.

The rules are as follows. Mama Chicken starts out at location 0. At every turn, the player spins

the spinner. If it is a Fox, then you lose a chick (if you currently have no chicks, then nothing

happens) and stay where you are. Otherwise you go to the first location labelled by the animal

that you got. The three-year-old counts the number of squares moved and collects that number of

chicks. If the new location is a blue square, then you get an extra chick.

Sooner or later, with probabilty 1, you would get to the last square, that is labelled by all the K

animals.

If win the game if you have at least N chicks, and you lose otherwise.

In the simplified example of [MM], N=8, K=2, the board is

0.START , 1.EMPTY 2.SHEEP 3.COW 4.EMPTY 5.COW 6.EMPTY, 7.SHEEP 8.{COW,SHEEP} ,

and the set of blue squares is {2.5}.

In the original version, K = 5 and N = 40.

In [MM] the game is modeled as a Markov chain with a huge number of states, essentially O(N2).

For the problem of just computing the probability of winning (for N = 40), they manage to reduce

it considerablly 163), but for the hader problem of computing the expected number of chicks they

needed 668 states, and the matrices were huge.

Our approach is also, essentially a Markov chain, but we don’t use any of the standard theory, and

our number of states is O(N) (obviously the EMPTY squares can be ignored). We use Gian-Carlo

Rota’s seminal idea of an ‘umbral operator’.

Let fi(t) be the probability generating function of lending at square i, where the coefficient of tj

is the probability that you currently have j chicks. To indicate that is currently at location i we

will denote it by sifi(t). If you got a Fox this becomes sifi(t)/t (followed by replacing t−1 by 1,

if necessary). Otherwise, the Chicken goes to a new location, let’s call it j, and the new state

becomes sjfi(t)t
j−i if j is not a blue square, and sjfi(t)t

j−i+1 if it. If we get a power of t larger

than N , we replace it by tN .

This introduces an ‘evolution operation’ that we call the pre-umbra.

2

In the [MM] simplied game we have

s0 → 1

3
(s0 + s2 t2−0+1 + s3 t3−0 =

1

3
(1 + s2t3 + s3t3)

F (t)s2 → F (t)

3
(s2/t + s3 t3−2 + s5 t5−2+1 =

F (t)

3
(s2/t + s3t + s5t4)

F (t)s3 → F (t)

3
(s3/t + s5 t5−3+1 + s7 t7−3 =

F (t)

3
(s3/t + s5t3 + s7t4)

F (t)s5 → F (t)

3
(s5/t + s7 t7−5 + s8 t8−5 =

F (t)

3
(s5/t + s7t2 + s8t3)

F (t)s7 → F (t)

3
(s7/t + s8 t8−7 + s8 t8−7 =

F (t)

3
(s5/t + s7t2 + s8t3)

F (t)s8 → F (t)s8

(since 8 is an absorbing state).

This must be followed by a ”clean-up” operation. Replacing t−1 by 1 (you can’t have a negative

number of chicks), and replacing t9, t10, . . . by t8.

This is the preumbra, defined on every monomial si, let’s call it T . If we have a polynomial in s

(and of course t), we extend it by linearity.

It is readily seen that applying this operator, starting with the initial state s0, describes the

‘evolution’ of the process.

While, in principle, the game can last for over (you keep getting foxes), life is finite, so we decide

that we are only playing K rounds.

The probability generating function after 1 round is T (s0) = 1
3 (1 + s2t3 + s3t3). After two rounds

is T 2(s0). Sooner or later we will encounter s8 (in general sN), here is our algorithm.

Let X be yet another variable.

Input: A general Count Your Chickens! game, and two variables t and X.

Output: A polynomial P (X, t) of degree K in X and degree N in t, such that the coefficient of

Xi is the probability generating function of the number of chicks you ended with, assuming that

you ended after exactly i rounds. It also outputs the probability of the game lasting longer than

K rounds.

We define recursively for i = 0 . . . ,K,

Q0(X, t) = s0 , R(X, t) := 0

Q′i(X, t) = T (Qi−1(X, t)) ,

3

Qi(X, t) = Q′i(X, t)− (Coefficient of sN inQ′i(X, t))sN

R(X, t) := R(X, t) + (Coefficient of sN inQ′i(X, t))Xi

If you roll a Fox, then the new porbabil

At the beginning Mama Chicken is located at the START square, and N is the number of squares.

The game consists of a spinner with K + 1 e

References

[MM] David Mccune and Lori Mccune, Counting your chickens with Markov chains, Mathematics

Magazine 92 (2019), 162-172.

Shalosh B. Ekhad, c/o D. Zeilberger, Department of Mathematics, Rutgers University (New Brunswick),

Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.

Email: ShaloshBEkhad at gmail dot com .

Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill Center-

Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.

Email: DoronZeil at gmail dot com .

Exclusively published in the Personal Journal of Shalosh B. Ekhad and Doron Zeil-

berger and arxiv.org .

Written: July 12, 2019.

4

