Five More Proofs of the Cosine Addition Formula (Inspired by Mark Levi's Perpetuum Mobile Proof)

Doron ZEILBERGER

Dedicated to my hero Mark Levi

Every time I get SIAM News, I immediately turn to Mark Levi's wonderful column Mathematical Curiosities https://www.marklevimath.com/sinews. In the current issue, Levi [L] gave a proof from the book of the trigonometric identity $\cos(\alpha + \beta) = \cos\beta \cdot \cos\alpha - \sin\beta \cdot \sin\alpha$, by showing that it follows from the non-existence of **Perpetual Motion**. This reminded me of five other proofs, none of them, admittedly, as nice as Mark Levi's proof (although the last one is a close second).

Pre-calculus: See the Wikipedia article List of Trigonometric Identities. \Box

Linear Algebra: Rotating the vector $[1,0]^T$ by an angle of α gives the vector $[\cos \alpha, \sin \alpha]^T$. Rotating the vector $[0,1]^T$ by an angle of α gives the vector $[-\sin \alpha, \cos \alpha]^T$. By **linearity**, the **rotation matrix**, R_{α} is

$$R_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

Now use **matrix multiplication** and the fact that $R_{\alpha+\beta} = R_{\alpha}R_{\beta}$. \Box

Complex Variable: Take the real parts of both sides of $e^{i(\alpha+\beta)} = e^{i\alpha}e^{i\beta}$

Differential Equations: Both sides satisfy the differential equation (viewed as a function of α) y'' + y = 0, subject to the initial conditions $y(0) = \cos \beta$, $y'(0) = -\sin \beta$. Now use uniqueness. \Box

Combinatorics: $\cos \alpha$ (resp. $\sin \alpha$) is the exponential generating function of increasing sequences of integers of even length (resp. of odd length) with weight $(-1)^{length/2}$ (resp. $(-1)^{(length-1)/2}$), see [Z]. Hence $\cos(\alpha + \beta)$ is the exponential generating function of two-colored increasing sequences of even length, with say, colors α and β . If the number of integers colored α is even (resp. odd) we get the first term (resp. second term) on the right. \Box

References

 [L] Mark Levi, Cosine Addition Formula and Perpetual Motion, SIAM News 55 #3 (April 2022), p.7.

 [Z] Doron Zeilberger, Enumerative and Algebraic Combinatorics, in: "Princeton Companion to Mathematics", (Timothy Gowers, ed.), Princeton University Press, 2008, 550-561.
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/enuPCM.pdf

D. Zeilberger, Mathematics Department, Rutgers University, DoronZeil@gmail.com