Five More Proofs of the Cosine Addition Formula (Inspired by Mark Levi's Perpetuum Mobile Proof)

Doron ZEILBERGER

Dedicated to my hero Mark Levi

Every time I get SIAM News, I immediately turn to Mark Levi's wonderful column Mathematical Curiosities https://www.marklevimath.com/sinews. In the current issue, Levi [L] gave a proof from the book of the trigonometric identity $\cos (\alpha+\beta)=\cos \beta \cdot \cos \alpha-\sin \beta \cdot \sin \alpha$, by showing that it follows from the non-existence of Perpetual Motion. This reminded me of five other proofs, none of them, admittedly, as nice as Mark Levi's proof (although the last one is a close second).

Pre-calculus: See the Wikipedia article List of Trigonometric Identities.
Linear Algebra: Rotating the vector $[1,0]^{T}$ by an angle of α gives the vector $[\cos \alpha, \sin \alpha]^{T}$. Rotating the vector $[0,1]^{T}$ by an angle of α gives the vector $[-\sin \alpha, \cos \alpha]^{T}$. By linearity, the rotation matrix, R_{α} is

$$
R_{\alpha}=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] .
$$

Now use matrix multiplication and the fact that $R_{\alpha+\beta}=R_{\alpha} R_{\beta}$.
Complex Variable: Take the real parts of both sides of $e^{i(\alpha+\beta)}=e^{i \alpha} e^{i \beta} \square$
Differential Equations: Both sides satisfy the differential equation (viewed as a function of α) $y^{\prime \prime}+y=0$, subject to the initial conditions $y(0)=\cos \beta, y^{\prime}(0)=-\sin \beta$. Now use uniqueness.

Combinatorics: $\cos \alpha$ (resp. $\sin \alpha$) is the exponential generating function of increasing sequences of integers of even length (resp. of odd length) with weight (-1$)^{\text {length } / 2}$ (resp. $\left.(-1)^{(l e n g t h-1) / 2}\right)$, see $[\mathrm{Z}]$. Hence $\cos (\alpha+\beta)$ is the exponential generating function of two-colored increasing sequences of even length, with say, colors α and β. If the number of integers colored α is even (resp. odd) we get the first term (resp. second term) on the right.

References

[L] Mark Levi, Cosine Addition Formula and Perpetual Motion, SIAM News 55 \#3 (April 2022), p.7.
[Z] Doron Zeilberger, Enumerative and Algebraic Combinatorics, in: "Princeton Companion to Mathematics" , (Timothy Gowers, ed.), Princeton University Press,2008, 550-561.
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/enuPCM.pdf

D. Zeilberger, Mathematics Department, Rutgers University, DoronZeil@gmail.com

