Teaching the Computer how to Discover(!) and then Prove(!!) (all by Itself(!!!))
Analogs of Collatz’s Notorious 3x+1 Conjecture

Doron ZEILBERGER

Mathematics: an Experimental Science

In spite of their exponential growth, computer-assisted and especially computer-generated mathematical research are still in their infancy. One approach is that of formal proofs using the axiomatic method. This method is based on the myth, that goes back to Euclid, that mathematics is a deductive science, where one starts with a bunch of axioms, (initially supposed to be “self-evident”, but later conceded as true-by-fiat) and then uses rules of deduction, and step-by-step, arrives at (seemingly) non-trivial results.

Of course, mathematics could be presented that way, and unfortunately, often is. But that is not how it is discovered. Pretending that the axiomatic method is how mathematics should be done, and trying to indoctrinate poor computers to do it that way, is a highly inefficient use of computers’ time.

Deep inside, mathematics is, or at least should be, an inductive science. How do human mathematicians come up with such amazing conjectures? By experimenting! How do they come up with such amazing proofs? By experimenting!, and not by combining axioms.

For many results in mathematics, one only needs one non-trivial “axiom”, that of Peano’s “axiom” of induction:

\[P(0) \& (P(n) \Rightarrow P(n+1)) \Rightarrow P(n) \text{ for all } n \geq 0. \]

All we have to do then is to have the computer prove (all by itself) \(P(0) \) (an a priori routine fact), and the not-a-priori routine \(P(n) \Rightarrow P(n+1) \), but, with the help of symbolic computation, treating \(n \) as a symbolic integer (which is one object) rather than as a variable (ranging over positive integers), we might hope to have the computer do it for us.

Often one tries to prove a statement by induction, but fails. In that case one has to try again. If \(P(n) \) is inadequate to prove \(P(n+1) \), perhaps we need another statement \(Q(n) \), such that \(Q(n) \) and \(P(n) \) imply \(P(n+1) \). Alas, now we also have to prove that \(P(n) \) and \(Q(n) \) imply \(Q(n+1) \). This may be easier-said-than-done, and we may be forced to introduce yet-another statement \(R(n) \). If we want to avoid a Ponzi scheme, we need this process to finally halt, but if we cannot train our

1 Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. zeilberg at math dot rutgers dot edu.

http://www.math.rutgers.edu/~zeilberg. First version: March 23, 2009. Accompanied by Maple package LADAS downloadable from http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/collatz.html, where one can also find (very interesting!) output, consisting of 144 computer-generated theorems and proofs. Supported in part by the NSF.
computer how to do it, it will be able to keep trying, before halting or giving up, for a much longer time.

Human mathematicians also do symbol crunching, most of which is purely routine, and that is much better delegated to computers.

Research is one percent Inspiration and ninety nine percent Perspiration

At this time of writing, humans are still needed to find ideas and strategies for generating conjectures, and for proving these conjectures. But once the human has some ideas, it is much more efficient to teach the computer these ideas, and let the computer search for conjectures, and most impressively, proofs, all by itself!

In this case-study in computer-generated mathematics, I will describe how I read very carefully a beautiful mathematical paper [AGKL], written by four brilliant human beings: Ed Grove and Gerry Ladas, and their (at the time) respective students, Candy Kent and Amal Amleh. I then extracted the ideas, looked at the structure of the proofs, but ignored the details. I then taught (programmed) my beloved computer to execute these ideas, and since it is much more patient than a human being, it was able to prove many more results. A very preliminary output can be viewed at the webpage of this article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/collatz.html

where there are 144 computer-generated results, that include those proved in [AGKL]. The computer did all the phases of mathematical research all by itself: conjecturing theorems, conjecturing proofs, and finally, verifying that the conjectured proofs are correct.

Background: The 3x+1 problem

Mathematics abounds with easy-to-state yet (apparently) impossible-to-prove statements, for example the Goldbach and twin-prime conjectures, but none of them rivals the simplicity of statement, and most probably, difficulty of proof, of the Collatz infamous 3x+1 conjecture, so beautifully exposited in Jeff Lagarias’ [L] masterpiece. I am sure that all the readers know it, but for the sake of completeness, let me state it anyway.

The Collatz 3x+1 Problem

Let \(x(n), (n \geq 0)\), be a sequence of positive integers defined by the first-order recurrence

\[
x(n+1) = \begin{cases}
\frac{x(n)}{2}, & \text{if } x(n) \text{ is even;} \\
\frac{3x(n)+1}{2}, & \text{if } x(n) \text{ is odd.}
\end{cases}
\]

subject to the initial condition \(x(0) = x_0\). Then for every positive integer \(x_0\), the sequence is eventually periodic with the trivial cycle \((2, 1)\).

Paul Erdős claimed that mathematics is not yet ready for solving such problems. I strongly believe
that it very soon will be, thanks to the emergence of computer-assisted and computer-generated methods, that eventually would be able to rigorously prove such statements, for all \(x_0 < \infty \), as opposed to just numerically verifying it for \(x_0 < M \) for some large specific integer \(M \). Of course, we can’t do it naively, since there are infinitely many cases to check, and even our largest and fastest computers are finite (and so are we, and our universe, for that matter).

If you try something and you fail, try and try again, then generalize and/or analogize!, no use being a damn fool and trying to prove the original conjecture. In 1995, Clark and Lewis[CL] played with an analogous, second-order recurrence

\[
x(n + 1) = \begin{cases}
\frac{x(n-1) + x(n)}{2}, & \text{if } x(n-1) + x(n) \text{ is even;} \\
-x(n-1) + x(n), & \text{if } x(n-1) + x(n) \text{ is odd.}
\end{cases}
\]

and started experimenting with it, numerically, by trying out some random initial values, and observing what is going on. For example, the following trajectory arises with \(x(-1) = 11, x(0) = 16: \)

\[
11, 16, 5, -11, -3, -7, -5, -6, -1, 5, 2, -3, -5, -4, 1, 5, 3, 4, 1, -3, -1, -2, -1, 1, 0, -1, -1, -1, -1, \ldots
\]

while the following one, with \(x(-1) = 13, x(0) = 6: \)

\[
13, 6, -7, -13, -10, 3, 13, 8, -5, -13, -9, -11, -10, 1, 11, 6, -5, -11, -8, 3, 11, 7, 9, 8, -1, -9, -5, -7, -6, 1, 7, 4, -3, -7, -5, -6, -1, 5, 2, -3, -5, -4, 1, 5, 3, 4, 1, -3, -1, -2, -1, 1, 0, -1, -1, -1, -1, \ldots
\]

or this one, with \(x(-1) = 11, x(0) = 5 \)

\[
11, 5, 8, 3, -5, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3 \ldots
\]

They noticed that none of the trajectories they encountered seem to go to infinity, but instead eventually end-up either being identically 1, or identically \(-1\), or end-up with the six-period \((-2, 1, 3, 2, -1, -3)\) for ever after. They then (probably) wrote a short computer program that checked their guess for all initial values \(-100 \leq x(-1), x(0) \leq 100\), and they had ample empirical evidence for the following

Theorem([CL]) Let \(x(-1) \) and \(x(0) \) be any two integers whose largest odd common divisor is 1, then \(x(n) \) is either eventually the constant 1, the constant \(-1\), or the six cycle \((-2, 1, 3, 2, -1, -3)\).

They then worked fairly hard to give a purely human proof.

A few years later, in the remarkable paper [AGKL] already mentioned above, Amleh, Grove, Kent and Ladas considered all 16 recurrences, for \(\alpha, \beta, \gamma, \delta \in \{-1, 1\} \).

\[
x(n + 1) = \begin{cases}
\frac{\alpha x(n-1) + x(n)}{2}, & \text{if } x(n-1) + x(n) \text{ is even;} \\
\frac{\beta x(n-1) + \gamma x(n)}{2}, & \text{if } x(n-1) + x(n) \text{ is odd.}
\end{cases} \tag{AGKL}
\]

It is immediate to see that if the initial values \(x(-1), x(0) \) have an odd common factor, all the remaining terms would also, so without loss of generality, one can consider the case where
$x(-1), x(0)$ do not have a common odd divisor. Also if they have a common even divisor, as long
as two consecutive terms are even, the transformation is “shrinking”, so without loss of generality
$\gcd(x(-1), x(0)) = 1$.

By a lot of human ingenuity and a considerable amount of human toil, Amleh et. al. proved that
for two cases there are trajectories that go to infinity ($(\alpha, \beta, \gamma, \delta) = (1, 1, 1, 1), (1, -1, 1, -1)$), and
for ten other cases (out of the possible sixteen cases) they proved that all trajectories end-up with
periodic orbits, and listed all of them. They left four open cases. One case is

$$(\alpha, \beta, \gamma, \delta) = (-1, 1, 1, 1)$$

for which they conjectured that all trajectories end up in one of the cycles

$$(0, 1, 1), (0, -1, -1), (2, 5, 7, 1, -3, -2, -5, -7, -1, 3),$$

and the case

$$(\alpha, \beta, \gamma, \delta) = (-1, 1, -1, -1),$$

for which they conjectured that all trajectories end up in one of the cycles

$$(-1, -2, 3), (1, 2, -3), (-1, 0, 1, -1), (1, 0, -1, 1).$$

Later they found yet another cycle, of length 33:

$$(79, -31, -55, -12, 67, -55, -61, -3, 29, 16, -45, 29, 37, 4, -41, 37, 39, 1, -19, -10, 29, -19, -24, 43, -19, -31, -6, 37, -31, -34, 65, -31, -48),$$

and made the modified conjecture that this completes the list.

The two other open cases are “dual” (see [AGKL]) to those two, and they would follow from them.

Deconstructing the Ingenious Human Proof

For the sake of definiteness and exposition, let’s focus on the original Clark-Lewis [CL] recurrence,

$$x(n + 1) = \begin{cases}
\frac{x(n-1) + x(n)}{2}, & \text{if } x(n-1) + x(n) \text{ is even}; \\
-x(n-1) + x(n), & \text{if } x(n-1) + x(n) \text{ is odd}.
\end{cases} \quad (CL)$$

but following the proof strategy of [AGKL].

General Outline of the Amleh-Grove-Kent-Ladas Proof Strategy

1. Try to prove that every trajectory is bounded. It would then follow immediately from the
 pigeon-hole principle, that there exists a pair of integers that shows up twice as $(x(n), x(n + 1))$, and
 once that happens it is trapped for ever into an orbit, but a priori infinitely many ultimate
 periods may show up, for different pairs of initial values.
2. In order to prove the boundedness assertion of 1 more specifically, look for two integers, \(c_1\) and \(c_2\) such that, empirically for now:

\[
|x(n)| \leq c_1|x(-1)| + c_2|x(0)| , \tag{FundIneq}
\]

(for the present case \(c_1 = 1, c_2 = 1\) works).

3. Try to prove (FundIneq) by induction. You will probably fail at first, but whenever you fail, you can add more hypotheses, and try to prove a more general statement, proving several inequalities at once by induction, including the one you really need. You may have to keep adding more and more statements, and this process might never end (and indeed if (FundIneq) is false, it better not end!), but if in luck, this would end. We will describe it in more detail later.

4. We now know that every trajectory must end-up with a cycle. We want to characterize all these cycles. Since a cycle is “cyclic”, we can, without loss of generality, make the largest element (in absolute value) be the \(x(1)\). Also since all the states are mod 2, we can take the initial conditions \(x(-1) = a\) and \(x(0) = b\) or \(x(-1) = a\) and \(x(0) = -b\), where \(a\) and \(b\) denote (symbolic) positive integers. (We should separately treat the cases \(b = 0\) and \(a = 0\), but this is really easy).

By cyclicity (considering the last two elements \(x(n-1), x(n)\) as our \(x(-1), x(0)\), and \(x(1)\) as an entry that comes after), we have the necessary condition

\[
|x(1)| \leq c_1|x(n-1)| + c_2|x(n)| ,
\]

that in addition to \(|x(n-1)| \leq |x(1)|, |x(n)| \leq |x(1)|\), enable us to “rule out” lots of possible parity sequences defined below.

5. Define the parity sequence of a trajectory \(x(n)\) to be the sequence \(x(n) \mod 2\). For example, the parity sequence of the trajectory

\[
11, 5, 8, 3, -5, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, \ldots
\]

is

\[
1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, \ldots .
\]

We are looking for candidate parity sequences that do not violate the necessary condition of 4. Note that if we know the parity sequence of a trajectory, we can express each term of the trajectory, in particular the last two, as certain explicit linear combinations of \(a = x(-1), b = x(0)\).

6. Using 4, we first empirically discover “all” the possible parity sequences of potential cycles. These parity sequences turn out (in all the successful cases encountered so far) to be regular expressions parametrized by few integer parameters. For example, for the present case they turn out to be

\[
(011)^{m_1}1^{m_2} , \quad (1011)^{1^{m_1}} , \quad (011)^{m_1}1^{m_2}0 , \quad (011)^{m_1}1^{m_2}01 .
\]

7. Rigorously prove, by induction on \(m_1, m_2, \ldots\), that these are the only ones, by using the inequalities of 4, but with symbolic \(m_1, m_2, \ldots\) (in addition to the symbolic \(a, b\)).
You can now express in **closed form**, in terms of $a := x(-1)$ and $b := x(0)$, the general two last terms, let’s call them $x(n-1), x(n)$, of such a trajectory. To investigate whether it can form a periodic orbit, try to solve the system of two linear equations

$$x(n-1) = a \quad , \quad x(n) = b \quad , \quad (or x(n-1) = a \quad , \quad x(n) = -b) \quad ,$$

getting a homogeneous set of two equations with two unknowns. a and b. Set the determinant of the 2×2 matrix of the resulting system of equations to zero, and get an expression in m_1, m_2, \ldots that is usually (i.e. generically) not zero. For those rare cases where it is 0, you would get a hope for a cycle, and solving for a and b would give them to you. (This is a bit analogous to finding eigenvalues, followed by the corresponding eigenvectors).

Before we can teach the computer how to discover and prove Collatz-type theorems, we need to teach ourselves, in somewhat greater detail, the brilliant ideas of [AGKL]. Let’s do this step-by-step for the original Clark-Lewis recurrence

$$x(n+1) = \begin{cases} x(n-1) + x(n), & \text{if } x(n-1) + x(n) \text{ is even} ; \\ -x(n-1) + x(n), & \text{if } x(n-1) + x(n) \text{ is odd} . \end{cases} \quad (CL)$$

Proving Boundedness

By using procedure `FindPreScheme` in the Maple package LADAS, the computer quickly makes the conjecture

$$|x(n)| \leq |x(-1)| + |x(0)| , \quad \text{for } n \geq -1 .$$

The natural approach would be to use induction on n. But it turns out that we (usually) need a **stronger** statement, so that we will have more *elbow-room* for the inductive argument.

We will shortly describe how the computer can *dynamically* construct this stronger statement, but let us first describe how the computer (and of course, us) can rigorously prove its validity, once it has been formulated. We will give more details than in customary in human discourse, avoiding the phrases and words “it is easily seen”, “obviously” (and whenever possible) “similarly”. This level of detail is necessary if we want to be able to transfer our know-how to our silicon brethren.

In the present case (recurrence (CL)), the stronger statement turns out to be as follows. Let $A = |x(-1)| + |x(0)|$.

Case I(n): If $x(n-1), x(n)$ are both *odd* then:

$$|x(n-1)| \leq A , \quad |x(n)| \leq A .$$

Case II(n): If $x(n-1)$ is *odd* and $x(n)$ is *even*, then:

$$|x(n-1)| \leq A , \quad |x(n)| \leq A , \quad |x(n-1) + x(n)| \leq A .$$

Case III(n): If $x(n-1)$ is *even* and $x(n)$ is *odd*, then

$$|x(n-1)| \leq A , \quad |x(n)| \leq A , \quad |x(n-1) + x(n)| \leq A .$$
The present example of (CL), the two last cases can be combined into “if \(x(n-1) + x(n) \) is odd”, since the three inequalities are identical. Usually this is not the case).

The natural approach would be to prove it by induction. There are three states:

\[I(n): (x(n-1), x(n)) = \text{(odd, odd)} \]

\[II(n): (x(n-1), x(n)) = \text{(odd, even)} \]

\[III(n): (x(n-1), x(n)) = \text{(even, odd)} \]

Let’s consider them each at their turn.

If we are currently in state \(I(n) \) (i.e. \((x(n-1), x(n)) = \text{(odd, odd)}\)), then the next “state” is either \(I(n+1) \) (i.e. \((x(n), x(n+1)) = \text{(odd, odd)}\)) or \(II(n+1) \) (i.e. \((x(n), x(n+1)) = \text{(odd, even)}\)).

Case Ia: \((x(n-1), x(n)) = \text{(odd, odd)}\), \((x(n), x(n+1)) = \text{(odd, odd)}\). We have to prove statement \(I(n+1) \), in other words:

\[|x(n)| \leq A \quad \text{and} \quad |x(n+1)| \leq A . \]

In terms of \(x(n-1), x(n) \) we have to prove:

\[|x(n)| \leq A \quad \text{and} \quad |\frac{1}{2}x(n-1) + \frac{1}{2}x(n)| \leq A . \]

The first inequality is already contained in the (inductive) premise, while for the second we use the triangle inequality:

\[|\frac{1}{2}x(n-1) + \frac{1}{2}x(n)| \leq \frac{1}{2}|x(n-1)| + \frac{1}{2}|x(n)| , \]

By the inductive hypothesis we know that \(|x(n-1)| \leq A \), \(|x(n)| \leq A \), so it follows that

\[|\frac{1}{2}x(n-1) + \frac{1}{2}x(n)| \leq \frac{1}{2}|x(n-1)| + \frac{1}{2}|x(n)| \leq \frac{1}{2}A + \frac{1}{2}A \leq A , \]

since \(\frac{1}{2} + \frac{1}{2} \leq 1 \).

Case Ib: \((x(n-1), x(n)) = \text{(odd, odd)}\), \((x(n), x(n+1)) = \text{(odd, even)}\).

We have to prove \(II(n+1) \), in other words:

\[|x(n)| \leq A \quad \text{and} \quad |x(n+1)| \leq A \quad \text{and} \quad |x(n) - x(n+1)| \leq A . \]

Expressed in terms of \(x(n-1) \) and \(x(n) \) these are

\[|x(n)| \leq A \quad \text{and} \quad |(x(n-1) + x(n))/2| \leq A \quad \text{and} \quad |x(n) - x(n+1)| \leq A . \]

Cleaning up, we have to prove:

\[|x(n)| \leq A \quad \text{and} \quad |\frac{1}{2}x(n-1) + \frac{1}{2}x(n)| \leq A \quad \text{and} \quad |\frac{1}{2}x(n-1) - \frac{1}{2}x(n)| \leq A . \]
The first inequality is contained in the inductive hypothesis, the second one is identical to the one done above, while, for the third one, we have, once again by the triangle inequality:

\[|\frac{1}{2}x(n-1) - \frac{1}{2}x(n)| \leq \frac{1}{2}|A| + |\frac{1}{2}|A| \leq A, \]

since \(|\frac{1}{2}| + |\frac{1}{2}| \leq 1\).

If we are currently in state II(n), the next state is necessarily III(n+1). We have to prove III(n+1):

\[|x(n)| \leq A, |x(n+1)| \leq A, |x(n) + x(n+1)| \leq A. \]

In terms of \(x(n-1), x(n)\) these are:

\[|x(n)| \leq A, |-x(n-1)+x(n)| \leq A, |x(n)-x(n-1)+x(n)| \leq A. \]

Simplifying, these are:

\[|x(n)| \leq A, |-x(n-1)+x(n)| \leq A, |x(n-1)| \leq A. \]

The first two inequalities are part of the inductive hypothesis, while the third one follows from the deep fact that \(|-1| = 1:

\[|-x(n-1)| = |(-1)x(n-1)| = |(-1)|x(n-1)| = 1|x(n-1)| = |x(n-1)| \leq A. \]

If we are currently in state III(n), the next state is necessarily II(n+1). In general, this would be different than the previous case, but in this example it is identical, so I hope that the reader will forgive me for using “similarly”, since this is not only similarly (in the colloquial human sense) but identical, and even a computer can realize that, and prevent a duplication of effort.

How to teach the Computer to Argue as above

In the above proof, we needed to know

(i) If we are currently at a certain state(n), what state(s) is (are) next?

(ii) Rewrite the expressions given in terms of \(x(n), x(n+1), x(n-1), x(n)\), using the rules of the recursion, according to the current state.

(iii) Know how to apply the triangle inequality, or realize that the inequality that we have to prove is already part of the inductive hypothesis.

Tasks (i) and (ii) are obvious, while for (iii) we need to prove that a bunch of inequalities

\[|L_1| \leq A, \quad |L_2| \leq A, \quad \ldots, \quad |L_m| \leq A \]

imply another one

\[|M| \leq A. \]

If in luck, \(M\) is already one of the \(L_i\)'s, or \(M = -L_i, \) for some \(i.\) Otherwise, we do a double do-loop looking for \(i\) and \(j\) such that one can write

\[M = c_1L_i + c_2L_j, \]
and then we check that \(|c_1| + |c_2| \leq 1\). If this fails, we try a triple do-loop, looking for \(1 \leq i < j < k \leq n\) such that
\[
M = c_1L_i + c_2L_j + c_3L_k,
\]
\(|c_1| + |c_2| + |c_3| \leq 1\), etc.

All this involves solving simple systems of linear equations, that Maple can do very fast.

OK, A Computer can automatically prove, by Induction, such a “Scheme” of inequalities, but we sure need humans to come up with it!

Wrong, of course! The computer starts with just what it really wants to know, namely \(|x(n)| \leq A\), and tries to prove it by induction. Chances are that there wouldn’t be enough assumptions, so to paraphrase Guru Greg Chaitin, we “add it as an axiom”, i.e. hypothesis, and keep trying to prove our “partial scheme” by induction, and whenever we need another assumption, let’s just add it. If we are lucky, this process would eventually halt, and we would be done.

Let’s illustrate it with the \((CL)\) recurrence. We start with the single inequality \(|x(n)| \leq A\) in all states. Obviously we need to add \(|x(n-1)| \leq A\) right away. This suffices for the transition \(I(n) \Rightarrow I(n+1)\), and \(I(n) \Rightarrow II(n+1)\). Als for \(II(n) \Rightarrow III(n+1)\) and \(III(n) \Rightarrow II(n+1)\) we can’t prove \(|-x(n-1) + x(n)| \leq A\), so we add it as part of the statement, and as we saw above, this suffices.

In general, we may have to add more and more hypotheses, but if all goes well, we would eventually converge.

Conjecturing the possible parity sequences of Cycles

Procedure DAPf of our Maple package LADAS constructs all feasible parity sequences of a given rule, of any given length. This is a recursive procedure that starts out with all feasible symbolic trajectories of length 3, phrased in terms of \(a\) and \(b\) that conform to the convention that the third element, \(x(1)\), is the largest in absolute value, and using \(a\) and \(b\) to denote symbolic positive integers. For example for Rule 6 of [AGKL]
\[
x(n+1) = \begin{cases}
\frac{-x(n-1)+x(n)}{2}, & \text{if } x(n-1) + x(n) \text{ is even;} \\
-x(n-1) + x(n), & \text{if } x(n-1) + x(n) \text{ is odd.}
\end{cases}
\]
(E6)
the feasible trajectories (with the above convention that the third entry, \(x(1)\) is largest in absolute value) are:
\[
[[a, -b, -a - b], [1, 2, 1]], [[a, -b, -a - b], [2, 1, 1]]
\]
(here we use 2 instead of 0, since in the program 0 denotes “either odd or even”). So we already know that it can’t start with both entries being odd (since then \(x(1)\) wouldn’t be able to be larger than both \(a\) and \(b\)). How does our computer generate the possible trajectories of length 4? For each parity sequence of length 3 it considers the two extensions obtained by appending 2 (even) and 1 (odd). Then Maple automatically solves the system of linear inequalities (featuring absolute
values, Maple can do it!) and if there are no solutions, discards that option. Step by step it constructs the potential parity sequences, and also expresses all the entries symbolically.

After Maple gathered enough data, it looks for patterns, and by using procedure `gGREplus` (of the Maple package `LADAS`), the computer finds, empirically, all the regular expressions in the alphabet \{0,1\} that are parity sequences of trajectories that do not violate any of the necessary conditions of 4. To prove that these are the only possibilities, rigorously, the computer first (symbolically) computes, (by using powers of matrices, or guessing, using the obvious format and then proving it by induction), explicit expressions for the last two elements of a trajectory \(x(n-1), x(n)\). For example, for (E6) (resorting back to the convention of the paper, rather than the program, of denoting an even integer by 0 rather than 2) there are three such possible symbolic regular expressions:

\[(011)^{m_1}, (011)^{m_1}1, (011)^{m_1}01\]

To prove that these are indeed all of them, simply use induction combined with the inequality of 4 and rule out, for example the possibility \((011)^{m_1}0\) that would violate (for symbolic \(m_1\) as well as symbolic \(a\) and \(b\)) that inequality. This too can be done automatically.

Finding All the Cycles

Now that we know what symbolic parity sequences may show up, we can explicitly express the last two terms of a trajectory (that is a potential cycle) in terms of \(a, b\) and \(m_1, m_2, \ldots\). Simply use symbolic powers of matrices (that Maple can easily do by finding the eigenvalues of the relevant matrices). For example, for rule (E6) and the symbolic trajectory \((011)^{m_1}\), we have

\[x(-1) = a, \quad x(0) = -b, \quad x(n-1) = (-1)^{m_1} + (-1)^{m_1+1}b, \quad x(n) = a(-\frac{1}{2})^{m_1} .\]

To investigate whether there exist \(m_1\) (a positive integer) and positive integers \(a\) and \(b\) such that this forms a cycle, we have to solve:

\[x(-1) = x(n-1), \quad x(0) = x(n).\]

In other words

\[a = a(-1)^{m_1} + (-1)^{m_1+1}b, \quad -b = a(-\frac{1}{2})^{m_1} .\]

Moving everything to the left:

\[a(1 - (-1)^{m_1}) + (-1)^{m_1}b = 0, \quad a(-\frac{1}{2})^{m_1} + b = 0 .\]

In order for there to be a non-zero solution \((a, b)\), the determinant:

\[1 - (-1)^{m_1} + \frac{1}{2^{m_1}} = 0 ,\]

must vanish, but that can never happen. Similarly the other two (potential) symbolic trajectories can be ruled out. The only contributors are those where either \(a = 0\) or \(b = 0\), and these easy cases are treated separately.
My beloved computer, Shalosh B. Ekhad, used my Maple package **LADAS** to consider, more generally, all 256 possible second-order difference equations of the form

\[
x(n+1) = \begin{cases}
\frac{\alpha_1 x(n-1) + \alpha_2 x(n)}{2}, & \text{if } x(n-1) \text{ is even and } x(n) \text{ is even;} \\
\frac{\alpha_3 x(n-1) + \alpha_4 x(n)}{2}, & \text{if } x(n-1) \text{ is odd and } x(n) \text{ is odd;} \\
\alpha_5 x(n-1) + \alpha_6 x(n), & \text{if } x(n-1) \text{ is odd and } x(n) \text{ is even;} \\
\alpha_7 x(n-1) + \alpha_8 x(n), & \text{if } x(n-1) \text{ is even and } x(n) \text{ is odd.}
\end{cases}
\]

for \((\alpha_1, \ldots, \alpha_8) \in \{-1,1\}^8\). It was successful in 144 cases (more than a half!). All these computer-generated theorems (and proofs!), complete with the proving schemes for the fundamental inequalities (and their detailed proofs!), can be viewed from the webpage of this article

The Maple package COLLATZ

In addition to the main package **LADAS**, we also developed a purely empirical Maple package, **COLLATZ**, to conjecture the cycles of generalized Collatz-type transformations of the form \(n \rightarrow a_i n + b_i\) if \(n \equiv i \mod m\), \((i = 1 \ldots m)\) such that \(ma_i\) and \(ia_i + b_i\) are integers.

Further Work

This is but the *tip of an iceberg*, except that the specific weight of *our* ice is much closer to 1 than that of real ice. Obvious extensions would be to consider general parity-dependent transformations on \(\mathbb{Z}_2\), rather than those of the form \((a,b) \rightarrow (b,F(a,b))\) considered here. More generally, we should consider transformations of the form

\[(a,b) \rightarrow F(a,b),\]

where \(F(a,b) = F_{i,j}(a,b)\) if \(a \equiv i \mod m\), \(b \equiv j \mod m\), and we have \(m^2\) linear transformations that map pairs \((a,b)\) such that if \(a \mod m\) and \(b \mod m\) equal \(i\) and \(j\) respectively, then \(F_{i,j}(a,b)\) outputs a pair of integers.

Why stop at transformations of \(\mathbb{Z}_2^2\)? We can also consider transformations of \(\mathbb{Z}^d\) for \(d = 3, 4, \ldots\).

The two remaining open cases of [AGKL], that we can’t do either, may very well be amenable to the present approach, except that the \(c_1, c_2\) that feature in the inequality \(|x(n)| \leq c_1|x(-1)| + c_2|x(0)|\) are rather large, and our program was not fast enough to conjecture them? It would be a good idea to take our amateurish and slow program and speed it up (say using Java and C), and perhaps be able to tackle these. On the other hand, we may need yet another idea, and perhaps the two remaining cases of [AGKL] are just as hard as the original Collatz problem.

What about *affine-linear* transformations? The original Collatz recurrence is a very simple first-order recurrence given in that way. What about using the [AGKL] method, as computerized here,
to systematically explore even one-dimensional analogs of the 3x + 1 problem, given by higher moduli, rather than two? See the Maple package COLLATZ mentioned above, for very preliminary (empirical) investigations.

And who knows? Perhaps a sufficiently higher-order recurrence, amenable to the present approach (or to a yet-to-be-discovered extension) would imply, via an appropriate specialization, the good-old Collatz problem?

So there is a lot to do. Research is a relay race. Myself (and even my beloved Shalosh) are already tired of this project, but we do hope that other people (and machines!) will take over. Amen.

References

