
Chapter IV: Games of Pure Chance Generated by Gambler’s Ruin with Unlimited

Credit: The General case

We will now consider the general case where there is an arbitrary set of non-zero integers, and

an arbitrary probability distribution on them, that we will call the die (or spinner), and at each

round, the random walker walks (forward or backwards, as the case may be) according to the

outcome of the die. He starts at 0, and the game ends as soon as he reaches a positive location, i.e.

as soon as its location is ≥ 1. We will later treat the more general case where the goal is to reach

a location that is ≥ m, for any positive integer m.

The engine driving our algorithms is the powerful Buchberger algorithm, that finds Gröbner

bases, and that is implemented in Maple and all the other major computer algebra systems.

It is convenient to separate the set of allowed steps into the set of positive steps, that we will call

U , and the set if negative steps, −D, so D is a set of positive integers. For example if the set of

allowed steps is {−2,−5, 1, 3, 4}, then U = {1, 3, 4} and D = {2, 5}.

Let us now state precisely the input and the desired output for our algorithms.

Main Algorithm

Input:

Two sets of positive integers D and U , corresponding to allowed steps −d (where d ∈ D) and

u (where u ∈ U) in the 1D lattice, or equivalently, (1,−d) (d ∈ D) and (1, u), u ∈ U , on the

two-dimensional lattice, and an assignment of probabilities {pd : d ∈ D}, {pu : u ∈ U}, such that∑
d∈D pd +

∑
u∈U pu = 1 with the meaning that the random walker walks d units backward if

the die landed on d ∈ D and moves u units forward if it landed on u ∈ U . The walker starts at

location 0 and ends as soon as he reaches a strictly positive location. In addition, we input two

symbols (variables), t and f .

Output: A polynomial P (f, t) of two variables, such that

P (f(t), t) ≡ 0 ,

holds, where f(t) is the probability generating function of the random variable: ‘number of rounds

until reaching a strictly positive location for the first time’, obeying the above random walk.

Our algorithm guarantees that such a polynomial P (f, t) always exists.

As in Chapter 3, we will first do the corresponding enumerative combinatorics version, and later

use it to our probability purposes. We will use the powerful algorithm described in Bryan Ek’s

brilliant PhD thesis [Ek1], and also covered in [Ek2].

We will sometimes think of the ‘gambling history’ listing the outcomes, getting a dynamic word

in the alphabet U ∪ (−D), i.e. a 1D path, but sometimes as a static entity, its graph where d ∈ D
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corresponds to the down step (1,−d) and u ∈ U corresponds to an up-step (1, u). So our problem

is equivalent to counting such graphs whose atomic steps are as above, that start at the origin, and

except for the endpoint that must be above the x-axis, is weakly below the x-axis.

As before for any word w = w1 . . . wn, where wi are integers, let Weight(w) =
∏n

i=1 zwi
. For

example Weight(1, 2,−1,−3) = z1 z2 z−1 z−3. For any set of words S, its weight-enumerator is

the sum of weights of all its members. If S is infinite (as is the case here) it is a formal power

series in the set of variables

{z−d ; d ∈ D} ∪ {zu ; u ∈ U}.

Bryan Ek’s Algorithm for the Enumeration Problem

The algorithm described in [Ek1][Ek2] does the following.

Input: Finite sets of positive integers D and U . This gives rise to the alphabet U ∪{−d : d ∈ D}.

Output: A polynomial P (f ; {zu, z−d}) of 1 + |U |+ |D|, variables such that

P (f({zu, z−d}) ; {zu, z−d}) ≡ 0 ,

holds, where f({zu, z−d}) is the weight-enumerator of all words in the alphabet S whose sum is 0

and all whose partial sums are non-positive.

The algorithm guarantees that such a polynomial P (f ; {zu, z−d}) always exists.

We use the same approach as in Chapter 3, but now we need the computer to ‘do the thinking’,

and we humans do the ‘meta-thinking’, teaching it how to do the ‘research’.

Let’s abbreviate our desired weight-enumerator f({zu, z−d}) by W0,0, and let P00 be the actual

set of paths weight-enumerated by it. In other words, the set of paths starting and ending on the

x-axis, where each step is either (1, u) (u ∈ U) or (1,−d), (d ∈ D) and that lie weakly below the

x-axis.

As we will soon see, we will be forced to introduce more general quantities. Let Wa,b be the weight-

enumerator of the set of paths Pa,b, that start at the horizontal line y = −a, end at the horizontal

line y = −b, and always stay weakly-below the x-axis.

Setting up a system of Non-Linear Equations

The case (a, b) = (0, 0)

Let’s look at an arbitrary member, w, of P0,0. It may be the empty path, but otherwise, let w1

be the longest prefix whose sum is 0, then we can write

w = w1 w2 ,
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where w1 ∈ W0,0, and w2 is also in W0,0 but with the additional property that except for the

endpoints, lies strictly below the x-axis. Let’s call this subset W0,0. Obviously, the first step of

w2 must be a down step, −d, for some d ∈ D, and the last step must be an up-step, u, for some

u ∈ U . For such a path (alias word), we can write ( note that d̄ = −d)

w2 = d̄ w3 u ,

where w3 is a path that starts at the horizontal line y = −d and ends at the horizontal y = −u but

that is strictly below the x−axis. Such paths are ‘isomorphic’ to paths that start at y = −(d−1)

and end at y = −(u − 1) and stay weakly below the x-axis, in other words paths that belong to

Wd−1,u−1.

So our desired quantity, W0,0, satisfies the one non-linear equation

W0,0 = 1 +
∑
d∈D

∑
u∈U

z−dWd−1,u−1 zu .

Alas, now we have to handle all the ‘uninvited guests’, the Wa,b with (a, b) 6= (0, 0) that showed up.

We already handled the case (a, b) = (0, 0), we have to address three more cases.

The case a > 0 and b > 0

If such a path, w, is strictly below the x-axis then it is ‘isomorphic’ to a member of Pa−1,b−1.

Otherwise, sooner or later, it would meet the x-axis for the first time. Let w1 be the sub-path

leading to that event.

We can write

w = w1 w2 ,

where w1 is a path from y = −a to y = 0 that, except for the last point, lies strictly below the

x-axis, let’s call that set W−a,0.

On the other hand w2 is a member of W0,b. Conversely, every two such paths w1 ∈ Pa,0 and

w2 ∈ P0,b, when joined is a member of Wa,b that touches the x-axis. Every path in W−a,0 must

obviously end with u ∈ U , and the path obtained by removing the last step belongs to W−a,−u,

that is ‘isomorphic’ to Wa−1,u−1. We thus have the equation

Wa,b = Wa−1,b−1 +

(∑
u∈U

Wa−1,u−1 zu

)
W0,b .

The case a > 0 and b = 0

The above discussion is also applicable to the case b = 0, except that the first term on the right,

Wa−1,b−1, disappears . So we have

Wa,0 =

(∑
u∈U

Wa−1,u−1 zu

)
W0,0 .
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The case a = 0 and b > 0

We have P0,b = P00 P0,b, so similarly

W0,b = W0,0

(∑
d∈D

z−dWd−1,b−1

)
.

Symbolic Dynamical Programming

Since our primary interest is , for now, W0,0, the other quantities Wa,b with (a, b) 6= (0, 0) are only

auxiliary unknowns, that we are not interested in for their own sake, but that would hopefully

enable us to find W0,0.

We start out with the equation for W0,0 that introduces |D||U | new quantities,

{Wd−1,u−1 : d ∈ D , u ∈ U} .

For each new equation that we set-up, we may get brand new quantities, Wa,b, not yet encountered,

but also some of which that already showed up before. For each new quantity, we set up a new

equation. A priori, it is conceivable that we would have infinite regress, getting an infinite set of

non-linear equations for an infinite set of unknowns. Luckily, this does not happen! Sooner or later

there are no more new ‘uninvited guests’, and we are left with a finite set of non-linear (in fact

quadratic) equations with the same number of unknowns, enabling us by elimination (using, in

our case the Buchberger algorithm in Maple) to get one (usually, very complicated!) equation in

the one unknown, W0,0. We can do the same thing for any of the other Wa,b and for that matter

any linear combination of Wa,b, calling that linear combination Z, introducing one more equation

and one more unknown, and eliminating Z, getting an algebraic equation satisfied by Z.

Straight Enumeration

Suppose that you are interested in the actual enumerating sequence, i.e. given a set of non-negative

integers, S, you want to have an “explicit” expression for a(n) the number of 1D walks, starting at

0 using the steps of S, ending at 0, and always staying weakly to the left of the origin. Equivalently,

given a set of integers S, our ‘alphabet’, a(n) is the number of words of length n whose sum is 0

and all whose partial sums are non-positive.

By specializing zu = t, (u ∈ U) ; zd = t, (d ∈ D) we have our next conceptual theorem.

Theorem 5: For an arbitrary set of integers S, let aS(n) be the number of sequences of length

n, whose entries are drawn from S with the property that the sum is 0 and all its partial sums are

non-positive. Then the ordinary generating function, in the variable t,

f(t) :=

∞∑
n=0

aS(n)tn ,
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is an algebraic formal power series, i.e. there exists a two-variable polynomial P , with integer

coefficients, such that

P ( f(t) , t ) ≡ 0 .

Furthermore, there exists an algorithm for finding this polynomial P (f, t).

As a corollary, we know that f(t) is D − finite, and hence a(n) is P -recursive, and we have

Theorem 5’: For an arbitrary set of integers S, let aS(n) be the number of sequences of length

n, whose entries are drawn from S with the property the sum is 0, and that all the partial sums

are non-positive. The sequence aS(n) is P-recursive, i.e. there exists a positive integer L and

polynomials pi(n) in n, such that

L∑
i=0

pi(n)aS(n− i) ≡ 0 .

Furthermore, there exists an algorithm for finding this linear recurrence.

Rigorous Experimental Mathematics

Now that we have the theoretical guarantee that the polynomial P (f(t), t) and the recurrence

exists, it may be more efficient, to crank out, using (the usual, not symbolic) dynamical pro-

gramming, sufficiently many terms and then fit them with a recurrence. The Maple commands

listtoalgeq(l,y(x)) and listtorec(l,a(n)) do just that. These two useful commands are part

of the versatile Maple package gfun written by Bruno Salvy and Paul Zimmerman [SZ].

The Weight-Enumerator of 1D walks that start at 0 end at strictly positive location

but otherwise stay weakly to the left of 0

Equivalently, in the two-dimensional version, our walks start at the origin, end above the x-axis,

and except for the end-point are weakly below the x-axis.

Since every such walk must obviously end with an up-step, u ∈ U , and the endpoint could be either

at y = 1, y = 2, . . . , y = u, the desired weight-enumerator, let’s call it Z, using the Wa,b above is

Z =
∑
u∈U

(
u−1∑
u′=0

W0,u′

)
zu .

This is our quantity Z mentioned above, and thanks for the Buchberger algorithm, we can eliminate

everything except Z, and get a single polynomial equation in Z.

From Enumeration to Probability

Having gotten a polynomial equation satisfied by the formal power series in the set of |D| + |U |
variables {zu : u ∈ U} ∪ {z−d : d ∈ D} that enumerates the above set of words, we plug-in

zu = pu t, z−d = pd t, getting an equation of the form

P (f(t), t) ≡ 0 ,
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satisfied by the probability generating function, f(t), for the random variable ‘duration until reach-

ing a positive amount for the first time’ if you start at 0 dollars, at each time step (round) you win

u dollars with probability pu , if u ∈ U , and lose d dollars with probability pd, if d ∈ D.

If the expected gain of a single step ∑
u∈U

pu u −
∑
d∈D

pd d ,

is positive, then sooner or latter the game ends.

So far f(t) was a formal power series, but when you plug-in t = 1, you get a (numerical)

convergent power series that must sum to 1, so f(1) = 1. It follows, that 1 is one of the roots of

the numerical equation , in f(1).

P (f(1), 1) = 0 ,

This implies our next conceptual result, Theorem 6.

Theorem 6: Let P be any ‘die’ (with any number of faces, any loading, and any assignments

of non-zero integers to its faces), where, at each step, you win or lose according to the outcome.

Assume that the expected gain of a single round is positive. Let X be the random variable ‘number

of rounds until reaching a positive amount for the first time’.

The probability generating function of X,

f(t) =

∞∑
k=0

Prob(X = k) tk ,

is an algebraic formal power series, in other words, there exists a two-variable polynomial, P (f, t),

such that

P (f(t), t) ≡ 0 .

Furthermore, there is an algorithm for finding the two-variable polynomial P (f, t).

As a corollary, we know that f(t) is D − finite, and hence Prob(X = k) is P -recursive, in k.

Theorem 6’: For an arbitrary ‘die’ as in Theorem 6, and X defined there, the sequence a(k) =

Prob(X = k) is P-recursive, i.e. there exists a positive integer L and polynomials pi(k) in k, such

that
L∑

i=0

pi(k) a(k − i) ≡ 0 .

Furthermore, there exists an algorithm for finding this linear recurrence.

What about expectation?, using implicit differentiation, we get

Pf (f, t) · f ′(t) + Pt(f, t) ≡ 0 .
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Eliminating f = f(t), from the two equations with three variables {f, f ′, t} (f ′ is short for f ′(t))

Pf (f, t) · f ′ + Pt(f, t) = 0 , P (f, t) = 0 .

we (or rather our computers) get a polynomial equation of the form Q(f ′(t), t) = 0, and plugging-

in t = 1, (f ′(1) is a numerical convergent series), we get that the expected duration is one of the

roots of the numerical equation

Q(f ′(1), 1) = .

By repeated implicit differentiation, and elimination of (t d
dt )

2f(t), and then (t d
dt )

3f(t), etc., we

get algebraic equations for as many moments as desired, and hence for the variance, and higher

moments about the mean. All this is implemented in procedure Momk(N,P,fk,k) in the Maple

package VGPileGames.txt. Readers who wish to see more details are more than welcome to examine

the Maple source code.

This brings us to the next ‘conceptual’ result.

Theorem 7: Consider any finite set of non-zero integers, and any probability distribution on them

with positive expectation, where, at each step, you win or lose according to the outcome. Assume

that the expected gain of a single round is positive. Let X be the random variable ‘number of

rounds until reaching a positive amount for the first time.’ Then the expectation, variance, and

any higher moments of X are algebraic numbers, whose minimal polynomial can be explicitly

computed.

If the expected gain of a single round,
∑

u∈U pu u −
∑

d∈D pd d, is 0, then the expectation and

higher moments are infinite. If it is negative, then the probability of exiting with a positive amount

is less than 1, and f(1) is one of the roots of the numerical equation P (f(1), 1) = 0, that is an

explicit algebraic number. Then one has to talk about the ‘conditional duration’, and replace f(t)

by f(t)/f(1), and Theorems 6 and 7 are still valid.

We will only present here one case. Quite a few similar propositions can be found in the web-page

of this article, and readers are welcome to generate many more using the command

Paper(N,P,k,K1,K2,f,eps);

in the Maple package VGPileGames.txt also available from there.

Proposition 16: Consider a 1D random walk with a set of steps {−1,−2, 1, 2} where Pr(−1) = 1
4 ,

Pr(−2) = 1
8 , Pr(1) = 1

4 , Pr(2) = 3
8 , that starts at 0. Let X be the random variable:

‘number of steps until reaching a strictly positive location for the first time’.

The probability generating function of X

f(t) =
∞∑
k=0

Prob(X = k) tk ,
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is a formal power series that satisfies the algebraic equation

t3f6 +
(
6 t3 − 8 t2

)
f5 +

(
19 t3 − 48 t2

)
f4 +

(
84 t3 − 80 t2 + 128 t

)
f3

+
(
71 t3 − 608 t2 + 320 t

)
f2 +

(
262 t3 − 360 t2 + 768 t− 512

)
f + 69 t3 − 432 t2 + 320 t = 0 .

The expectation, f1, is one of the roots of the cubic equation

f1
3 − 12 f1

2 + 16 f1 + 32 = 0 ,

whose floating-point rendition is 2.9653919099833889 . . ..

The second moment, f2, is one of the roots of the cubic equation

101 f2
3 − 14140 f2

2 + 367216 f2 − 273824 = 0 .

whose floating-point rendition is 33.31799734943726426 . . .. It follows that the variance is 24.5244481696423327 . . .,

and hence the standard-deviation is 4.9522164905870515 . . . .

The two-player version

Suppose two players take turns rolling the P die, and the one who is the first to reach a positive

amount is declared the winner. Recall that the probability of the first player winning the game is

(1 + s)/2, where

s =

∞∑
n=1

Prob(X = k)2 ,

it follows from Theorem 6’ that s is a holonomic constant.

Playing until reaching at least m dollars for the first time

If the set of up-steps, U , consists of only one dollar, i.e. if U = {1}, then the probability generating

function for the random variable “number of rounds it takes until reaching at least m dollars for

the first time” is simply f(t)m, and everything goes through, and the probability of the first player

winning is holonomic in m. In the more general case, it is also true, but a bit more complicated, and

we did not implemented it yet. The probability generating function for the ‘first time of reaching

≥ m’ case can be shown to satisfy a linear recurrence equation in m whose coefficients are what

we called {Wa,b} above. After differentiating with respect to t, we can get recurrences for the

expectation, and higher moments.

This brings us to the next theorem that we state without proof, and is not yet implemented in

general.

Theorem 8: Consider any finite set of non-zero integers, and any probability distribution on them

with positive expectation, where, at each step, you win or lose according to the outcome. Assume

that the expected gain of a single round is positive. For any positive integer m, let Xm be the
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random variable ‘number of rounds until reaching an amount that is ≥ m for the first time.’ Then

the probability generating function of Xm, let’s call it fm(t) is an (constant) algebraic formal power

series, and fm(t) satisfies a linear recurrence in m with coefficients that are algebraic formal power

series.

Furthermore, E[Xm] are algebraic numbers, that satisfy a linear recurrence equation with con-

stant coefficients (but the constants featuring in the linear recurrence are, in general, algebraic

numbers).

Keeping it Simple: Numerics Driven by Symbolics

For quite a few ‘dice’, our computers were able to find the exact answer for the question

What is the probability generating function for the random variable ‘Number of rounds until reaching

a positive amount for the first time .

Of course, except for the Catalan case, it is not fully explicit, but it is as explicit as it gets, the

exact polynomial equation

P (f(t), t) = 0 ,

satisfied by it, and that, in turn, enables us to find the exact values of the expectation, variance

and higher moments, in terms of explicit algebraic numbers, i.e. numbers given by their minimal

equation with integer coefficients.

But if the ‘die’, P, gets larger, these algorithms are mainly of theoretical interest, i.e. for conceptual

computation. To actually get answers, very fast, we recommend using the following simple-

minded symbolic-numeric algorithm.

We can also do simulation, but these are very inexact. They are only useful (for our current

project) as sanity checks, to make sure that we did not mess up.

Let h(x) be the probability generating function of our die

h(x) =
∑
u∈U

pu x
u +

∑
d∈D

pd x
−d .

For example, for the fair Catalan case h(x) = 1
2 (x+ x−1), for the Fuss-Catalan case considered in

Chapter III, with ‘one step forward, k steps backwards’, h(x) = px+ (1− p)x−k, and for the more

difficult case ‘one step backwards, k steps forward’ case, we have h(x) = px−1 + (1− p)xk.

For any Laurent polynomial, define the operator: ‘the positive part’ as follows:

G[

d∑
i=c

aix
i)] =

d∑
i=1

aix
i .

For example,

G[
1

10
x−3 +

1

20
x−2 +

7

20
x− +

1

20
+

1

4
x+

1

4
x2] =

1

4
x+

1

4
x2 .
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The Symbolic-Numeric Algorithm to compute the first K terms of the probability

generating function of our ‘duration of the game’ random variable

Input

• A die, P, whose probability generating function is the Laurent polynomial h(x).

• A positive integer K.

Output

The first K terms in the Maclaurin expansion of the probability generating function of the random

variable: ‘number of rounds until the player reaches a strictly positive amount for the first time’,

let’s call it fK(t).

Initialize: F0(x) := 1, f0(t) = 0.

For i from 1 to K do

A(x) := Fi−1(x)h(x) ,

Fi(x) = A(x) − G[A(x)] ,

fi(t) = fi−1(t) +G[A(x)]|x=1 t
i .

Intuitively, Fi(x) describes the scenarios that still did not make it to positivity by the i-th step.

Multiplying by h(x) is the ‘roll of the die’, G[A(x)] describes the lucky scenarios that made it by

the i-th round, and plugging in x = 1, gives the probability due to all the scenarios that made it

exactly at the i-round for the first time.

If h′(1) > 0, then f(1) = 1, and to see how good fK(t) approximates f(t), plug-in t = 1. If this is

very close to 1 (usually it is!), then you are safe.

Also, frankly, you are not immortal, and even if you are, it is good to a priori set a limit to the

number of allowed rounds, and compute everything conditioned on finishing in ≤ K rounds.

The conditional expectation on finishing in ≤ K rounds is f ′K(1)/fK(1), the second moment is

(t d
dt )

2fK(t)|t=1/fK(1) and the k-th moment is (t d
dt )

kfK(t)|t=1/fK(1).

These give much faster, very accurate, approximations to the desired statistical quantities of our

random variable.

Similarly, we can compute, very fast, the truncated Taylor series of the random variable ‘first time

of having an amount ≤ m’, for any desired m.

This is accomplished by procedure Ngf(N,P,t,K) in the Maple package VGPileGames.txt.
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If you want to see many examples, look at the file

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oVGPileGames2.txt .

Another route to get the exact value of the expectation, variance, etc., is to derive numerical

approximations like we did, and use Maple’s command identify or use the Inverse Symbolic

Calculator,

https://isc.carma.newcastle.edu.au/ .

If you get an algebraic number, then it is most likely the right one, since we know, from the

‘conceptual part’, that it is an algebraic number.

Using this ‘experimental way’, we discovered the following lovely proposition.

Proposition 17: Consider a ‘two steps forward one step backwards random walk’ starting at 0,

with Prob(−1) = Prob(2) = 1
2 . The expected number of rounds until reaching a location ≥ m for

the first time, equals, exactly

2m + (4 − 2φ) + 2 (Fm+2 φ− Fm+3) ,

where Fm are the Fibonacci numbers and φ = 1+
√
5

2 is the Golden Ratio.

Note that this makes sense, since the last term Fm+2 φ−Fm+3 is exponentially small in m, so this

is very close to 2m + 4 − 2φ, and since the expected gain of one round is 1
2 a crude approximation

to the expected duration until owning ≥ m dollars should be roughly m/ 1
2 = 2m. Also note that

when m = 1 we get 2 + 4− 2φ+ 2(F3 φ − F4) = 6− 2φ+ 2(2φ − 3) = 2φ, in agreement with the

result established in Chapter III.

What about a proof of Proposition 17?

Proposition 17 was discovered experimentally, but we do know how to prove it. Writing it up,

though, will take time and effort that we are unwilling to spend. We will be glad to furnish a proof

in return to a $2000 donation to the On-Line-Encyclopedia of Integer Sequences.

Conclusion

In this article, using Games of pure chance as a case study, we preached the value of compu-

tational diversity. Purely numeric, numeric-symbolic, purely symbolic, and ‘conceptual’, as well

as the simulation, that in our case plays a secondary role, as a checker. It is so easy to have

bugs in your programs, or gaps in your reasoning, so it is still reassuring that you can confirm the

numbers that you got are in the right ball-park. We also demonstrated a novel application of the

Buchberger algorithm.
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