
Chapter III: Games of Pure Chance Generated by Gambler’s Ruin with Unlimited

Credit: The Fuss-Catalan case

In Chapter II, we only allowed positive steps. Now we will also allow negative steps, and treat

games that may be viewed as a “gambler’s ruin with infinite credit”, with arbitrary ‘die’. In the

next chapter we will treat the case of a general die, while in this chapter we only consider two-faced

dice, where one of the faces is marked 1 and the other markded −k, and the more difficult case

where one of the faces is marked −1 and the other marked k. We will start with their intersection,

the very classical case of {−1, 1}, treated in Feller’s classic [F]. However, even in this case we will

be able to go beyond Feller, since he did not use a computer.

The general set-up, to be considered in full generality in Chapter IV is as follows.

On the discrete line, you start at the origin x = 0, and there is a fixed allowed set of steps consisting

of both positive and negative integers and a probability distribution on them, let’s call it P. You

are allowed to go as far left as possible (i.e. you can owe as much as necessary). At each round,

you roll the P die, and move accordingly. You win as soon as you reach a location ≥ 1, or more

generally when you reach a location ≥ n. In other words, your goal is to exit the casino with at

least one dollar (or more generally, at least n dollars). In the two-player (or multi-player) version,

the players take turns rolling the P die, and whoever achieves the goal first is declared the winner.

As before, we will first discuss the solitaire game, where the goal is to reach it as soon as possible.

Classical Gambling: Winning a dollar or losing a dollar

Let’s start with the simplest, most classical case, of simple random walk, where you start with 0

dollars, and at each round you win a dollar with probability p and lose a dollar with probability

1 − p. The expected gain at each individual round is p · 1 + (1 − p) · (−1) = 2p − 1, so if p > 1
2 ,

then sooner or later you will reach your goal. If p < 1
2 , then you may never make it, sliding down

to infinite debt. In the border-line case of a fair coin, p = 1
2 , as we will soon see, you are also

guaranteed to ‘eventually’ be in possession of 1 dollar (and more generally, n dollars for each n > 0,

as big as you wish). Alas, as we will also soon see, the expected time until that happens is infinite,

and since life is finite, there is a good chance that when you will pass away, your heirs will have a

huge debt.

Analyzing Gambling histories

For typographical clarity, let’s denote −1 by 1.

Our alphabet is {−1, 1}={1, 1}. A ‘gambling history’ consists of a word that ends in 1, whose

sum is 1, and whose proper partial sums are all non-positive. Obviously the length of such a game

is odd.

If you are really lucky, you exit after one step, since you won a dollar right away.

If you lost a dollar at the first round, you can recover at the second round, and then win a dollar
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at the third round. Etc.

For the sake of clarity and concreteness, let’s list the first few ‘histories’.

Length 1: { 1 }. Probability = p.

Length 3: { 1 1 1 }. Probability = p2 (1− p).

Length 5: {1 1 1 1 1 , 1 1 1 1 1 }. Probability 2 · p3 (1− p)2.

Length 7:

{1 1 1 1 1 1 1 , 1 1 1 1 1 1 1 , 1 1 1 1 1 1 1 , 1 1 1 1 1 1 1 , 1 1 1 1 1 1 1 } ,

with probability 5 · p3 (1− p)2.

It is useful, for humans, to visualize such a history as a lattice path in the discrete plane starting

at (0, 0) where 1 corresponds to a step (1,−1) and 1 corresponds to a step (1, 1). For example, the

word (gambling history)

1 1 1 1 1 1 1 ,

corresponds to the walk

(0, 0)→ (1,−1)→ (2,−2)→ (3,−1)→ (4, 0)→ (5,−1)→ (6, 0)→ (7, 1) .

Let’s study the anatomy of such histories, or equivalently, paths . Obviously they are all of odd

length, and they all end with 1. So we can write, for any history W

W = U 1 ,

where U is a word that sums to 0, all whose partial sums are non-positive. Such words are called

Dyck words.

Let’s analyze such a Dyck word U or rather its corresponding path from (0, 0) to (2n, 0), say. Of

course, it may be the empty word, but if it is not, let (2r, 0) 0 < r ≤ n be the first time that it

hits the x-axis. Then we can write

U = U1 U2 ,

where U2 is another word of that kind (of length 2n− 2r), but U1, consisting of the first 2r letters

of U , has the special property that all its partial sums (except the 0-th and the last) are strictly

negative, or in terms of its path, except for its starting and ending points, they lie strictly below

the x-axis. Such a word must necessarily start with a 1 and end with a 1, and may be written as

1U31, where U3 is an arbitrary Dyck word. Conversely, for any Dyck word U3, 1U3 1 corresponds

to such a ‘strictly below the x-axis’ path. So we have the (context-free) grammar

U = EmptyWord ∨ 1U 1U , (DyckGrammar)
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where now U stands for ‘an arbitrary Dyck word’.

let x1 and x−1 be commuting variables.

For any word u = u1 . . . um, let the weight of u be xu1
· · ·xum

. For example,

weight(1 1 1 1 1 1 1 1) = x−1x−1x−1x1x1x1x−1x1x1 = x4−1x
5
1 .

Let F (x−1, x1) be the weight enumerator of the set of Dyck words, i.e. the sum of all the weights

of all these words, a certain formal power series in x−1, x1.

Obviously the weight of the empty word is 1 (the empty product), hence applying weight to

(DyckGrammar), we get the quadratic equation

F = 1 + x−1 F x1 F .

Abbreviating X = x−1 x1, we get

F = 1 + X F 2 .

Recalling what we learned in seventh grade (or what the Babylonians knew more than 3000 years

ago), we can express F explicitly

F =
1−
√

1− 4X

2X
.

Recalling what we learned in 12-th grade (or what Isaac Newton knew more that 300 years ago)

we can write

F =

∞∑
m=0

(2m)!

m! (m+ 1)!
Xm ,

implying the fact that the number of Dyck paths of length 2m is the super-famous Catalan number

Cm = (2m)!
m! (m+1)! , that is the subject of Richard Stanley’s modern classic [St], and the most popular

sequence, A108, in the great OEIS [Sl].

The above is the standard, very boring proof of that famous fact. We know at least a dozen proofs, some of them

are given in [St]. Here is one of our favorite proofs due to Aryeh Dvoretzky and Theodore Motzkin [DM].

The fact that the number of Dyck paths of length 2m equals the Catalan number Cm is equivalent the fact that the

number of words in {1,−1} of length 2m+ 1 whose sum is 1 and all whose proper-partial sums are non-positive

is Cm. Every word of length 2m+ 1 in {−1, 1} that adds up to 1 has m+ 1 ‘1’ and m ‘1’. There are
(
2m+1

m

)
such words. The 2m + 1 cyclic shifts of each such word are all different (why?), and exactly one of them has

the property that its partial sums are all non-positive (why?). Hence the number of gambling histories that we are

interested in is 1
2m+1 ·

(
2m+1

m

)
= Cm.

Enter Probability
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So far what we did was enumerative combinatorics. We found out that the weight-enumerator of

the set of Dyck words is
1−
√

1− 4x−1x1
2x−1x1

,

and hence the weight enumerator of words in {−1, 1} that add-up to 1, and such that all their

proper partial sums are ≤ 0, is x1 times that, i.e.

1−
√

1− 4x−1x1
2x−1

.

Assume that each round in the gambling game is independent of the other ones, and for each of

them the probability of winning a dollar is p, and hence of losing a dollar is 1 − p. Plugging-in

x−1 = (1−p) t, x1 = p t, in the above explicit enumerating generating function, we get the following

human-generated, well-known (see [F]) proposition.

Proposition 5: The probability generating function of the random variable ‘numer of rounds

it takes until the first time you have one dollar’, if you start with 0 dollars and at each round you

win a dollar with probability p and lose a dollar with probability 1− p, let’s call it g(t) is

g(t) =
1−

√
1− 4 (1− p) pt2
2 (1− p) t

.

So far all our power series were formal, but it is easy to see that if p ≥ 1
2 then plugging-in t = 1

leads to a convergent series, that sums-up to 1, in agreement with the obvious fact that if p > 1
2

sooner or later you will succeed, and the slightly less obvious fact that it is still true when p = 1
2 . If

p < 1
2 , then we must take the other sign of the square-root, leading to the classical and well-known

fact that the probability of one day having one dollar in your possession is p
1−p .

More generally, suppose that your goal in life is not just to exit the casino with one dollar, but you

want to make n dollars. Since each additional dollar is yet another 1-dollar game, we immediately

get.

Proposition 5’: The probability generating function of the random variable ‘numer of rounds

it takes until the first time you have n dollars’, if you start with 0 dollars and at each round you

win a dollar with probability p and lose a dollar with probability 1− p, is given by(
1−

√
1− 4 (1− p) pt2
2 (1− p) t

)n

.

From now let’s assume that p ≥ 1
2 . To get the expected duration we can sill do it by hand,

find (g(t)n)′ = ng(t)n−1g′(t), then compute g′(t), plug-in t = 1 and simplify, getting that the

expectation is n
2p−1 .

For the k-th moment, we compute (t d
dt )

k(g(t)n), plug-in t = 1, and simplify, expressing all higher

derivatives of g(t) in terms of g(t) and t, followed by substituting t = 1.
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An even better way, that would be the only way later on when we do the general gambling caes, is

to use implicit differentiation, using the relation

f(t) = 1 + p (1− p) t2f(t)2 ,

and its implied relation for g(t) = p t f(t).

It turns out that if you use the explicit expression g(t) =
1−
√

1−4 (1−p) pt2
2 (1−p) t all the radicals disappear,

and if you use implicit differentiation, and then plug-in t = 1, you never have to divide 0 by 0, so

either way you would get that all the moments are polynomials in n and rational functions in p.

In particular, if p is a rational number, then they are all also rational numbers. The expectation,

is n
2p−1 .

For higher moments, We get the following computer-generated proposition.

Proposition 6: Let Xn,p be the random variable “Number of rounds until reaching n dollars for

the first time” in a gambling game where the probability of winning a dollar is p and of losing a

dollar is 1− p. Assume that p > 1
2 . We have

E[Xn,p] =
n

2p− 1
.

V ar[Xn,p] =
4n p (1− p)

(2p− 1)3
.

The skewness (aka scaled third moment about the mean) is

α3[Xn,p] =
(
−2 p2 + 2 p+ 1

)
(−1 + 2 p)

−2 1√
−np(−1+p)

(−1+2 p)3

.

The kurtosis (aka scaled fourth moment about the mean) is

α4[Xn,p] =
−4 p4 + (6n+ 8) p3 + (−9n+ 6) p2 + (3n− 10) p− 1

np (−1 + p) (−1 + 2 p)
.

For the 5-th through 10-th scaled moments, see the output file

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oGenPileGames1.txt .

The Two Player version for the (1,−1) case

Using Lagrange inversion (see [Z4] for a lucid statement and proof) or otherwise, it is easy to see

that the probability of reaching m dollars for the first time after exactly n rounds, in a solitaire
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game where the probability of winning a dollar is p and the probability of losing a dollar is 1− p,
let’s call it bn,m is

bn,m =
m (2n+m− 1)! pn+m (1− p)n

n! (n+m)!
.

Suppose that two players take turns and whoever reaches m dollars first is declared the winner.

As before, the probability of winning the game for the player whose turn is to move is a(m) =

(1 + f(m))/2, where

f(m) =

∞∑
n=1

b2n,m .

Using the Zeilberger algorithm once again we have the next computer-generated proposition.

Proposition 7: In the two player version game with a fair coin, i.e. the probability of winning a

dollar and losing a dollar are both 1
2 , the winning probability of the player whose turn is to move

is (1 + f(m))/2 where f(m) satisfies the second-order recurrence(
2m2 + 5m+ 2

)
f (m+ 2) +

(
−12m2 − 24m− 10

)
f (m+ 1) +

(
2m2 + 3m

)
f (m) = − 8

π
,

subject to the initial conditions

f (1) = −−4 + π

π
, f (2) = −−16 + 5π

π
.

For the loaded case, where p > 1
2 , we have the next proposition.

Proposition 8: In the two player version game with the probability of winning a dollar is p and

losing a dollar is 1− p , provided 1
2 < p < 1, the winning probability of the player whose turn is to

move is (1 + f(m))/2 where f(m) satisfies the fourth-order recurrence

m (−1 + p)
4

(m− 3) f (m)− (−1 + p)
2 (

2m2 − 7m+ 4
)
f (m− 1)

+
(
−2m2p4 + 4m2p3 + 8mp4 − 2m2p2 − 16mp3 − 4 p4 + 8mp2 + 8 p3 +m2 − 4 p2 − 4m+ 4

)
f (m− 2)

−p2
(
2m2 − 9m+ 8

)
f (m− 3) + p4 (m− 1) (m− 4) f (m− 4) = 0 ,

subject to the appropriate initial conditions.

Winning a dollar or losing k dollars

Now let’s generalize to the gambling game where, as before, you start with a capital of 0 dollars,

but now at each round you win a dollar with probability p or lose k dollars with probability 1− p,
and the game ends as soon as you owe 1 dollar. Very soon we will treat the more general case

where the goal is to exit with m dollars, but for now let’s consider the case of m = 1.

In order to guarantee that the game ends, the expected gain of a single round, p · 1− (1− p) · k =

(k + 1) p − k should be positive. So we will assume that p > k
k+1 . In the border-line case p = k

k+1

the game still ends with probability 1, but its expected duration is infinite.

6



Now the alphabet is {1,−k}, and we will try to adapt the above argument that workded for the

classical case. Let’s abbreviate k̄ := −k. Now the steps are (1, 1) and (1,−k).

Let’s study the anatomy of such words (histories) or, equivalently, paths. Obviously all these words

are of length n(k + 1) + 1, for some non-negative integer n, and they all end with 1. So we can

write, for any history W ,

W = U 1 ,

where U is a word that sums to 0, all whose partial sums are non-positive. we will call such words

(1,−k)-Dyck words.

Let’s analyze such a (1,−k)-Dyck word U or rather its corresponding path from (0, 0) to ((k+1)n, 0),

say. Of course, it may be the empty word, but if it is not, let (r(k + 1), 0) 0 < r ≤ n be the first

time that it hits the x-axis. Then we can write

U = U1 U2 ,

where U2 is another arbitrary (1,−k)-Dyck word, but U1 has the special property that all its partial

sums (except the 0-th and the last) are strictly negative, or in terms of its path, except for its

starting and ending points, they lie strictly below the x-axis. Such a word must necessarily start

with a k̄ and end with a 1, but to recover the ‘debt’ of k, must regain these lost k dollars, one

dollar at a time, so it may be written as k̄ (U31)k, where U3 is an arbitrary (1,−k)-Dyck word.

Conversely, for any such word U3, k̄ (U3 1)k is such a strictly below the x-axis word. So we have

the (context-free) grammar

U = EmptyWord ∨ k̄ (U 1)kU , ((1,−k)−DyckGrammar)

where now U stands for ‘an arbitrary (1,−k)-Dyck word’.

Let F (x−k, x1) be the weight-enumerator for all such words. Applying the weight operation, we get

that F = F (x−k, x1) satisfies

F = 1 + (x−kx
k
1)F k+1 .

Abbreviating X := x−k x
k
1 , this can be written

F = 1 + X F k+1 .

When k = 2 and k = 3, we can solve these equations ‘explicitly’ using ‘radicals’, thanks to Cardano

and Ferrari, but thanks to Abel, Ruffini, and Galois we know that we can not do it for k ≥ 4.

Even the ‘explicit’ solutions for k = 2 and k = 3 are not very useful. On the other hand, thanks to

Lagrange inversion (see,e.g. [Z4]) we can find the Maclaurin expansion explicitly.

F (X) =

∞∑
m=0

((k + 1)m)!

m! (km + 1)!
Xm ,

featuring the Fuss-Catalan numbers Ck,m = ((k+1)m)!
m! (km+1)! .
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It follows that the weight-enumerator of words in {−k, 1} that add-up to 1, and such that the

proper-partial sums are all non-positive is F (x−kx
k
1)x1, since the last letter must be 1.

Equivalently (and that’s is our actual object of interest) the number of words with m ‘−k’ and mk + 1 ‘1’ whose

proper-partial sums are all non-positive equals the Fuss-Catalan number Ck,m. This can be also proved by adapting

the [DM] proof. There are
(
mk+1+m

m

)
words altogether, and for each of these its mk + 1 +m cyclic shifts are all

different, and exactly one of them is a ‘good’ word, hence there are 1
mk+1+m

(
mk+1+m

m

)
= Ck,m such words.

Since, in order to exit with n dollars , we must gain one dollar, n times, the weight-enumerator of

words that reach n for the first time is (F (x−kx
k
1)x1)n.

So far we did enumerative combinatorics. To convert it to probability, we plug-in the above x1 = p t

and x−k = (1− p) t. Using implicit differentiation, we can compute the expectation, variance, and

higher moments. Since in this case we do not encounter 0/0, all the moments are rational functions

of p. In particular, if the number p is rational, all the quantities are rational numbers.

Using implicit differentiation, for symbolic k and symbolic p and symbolic n, our beloved

computer generated the next proposition.

Proposition 9: Suppose that at each round, you win a dollar with probability p and lose k dollars

with probability 1 − p, and you quit as soon as you reach n dollars. If p > k/(k + 1), then, of

course, sooner or later you will reach your goal. How long should it take? Denote by Xn,k,p the

random variable, ‘number of moves until reaching n dollars’. We have the following facts.

Let g(t) be the formal power series, in t, satisfying the algebraic equation

g (t)− 1− pk (1− p) tk+1 g(t)k+1 = 0 .

The probability generating function of Xn,k,p is

( p t g(t) )n .

By implicit differentiation, followed by substituting t = 1, we can compute any desired derivative,

and hence the expectation, variance, and higher moments. We have

E[Xn,k,p] =
n

(p− 1)k + p
,

[as expected (npi), since the expected gain in one move is (p− 1)k + p ]. The variance is given by

V ar[Xn,k,p] = −np (k + 1)
2

(p− 1)

((p− 1) k + p)
3 .

The skewness (aka ‘third scaled-moment about the mean’) is

α3[Xn,k,p] = − (k + 1)
(
kp2 + p2 − k − 2 p

)
(kp− k + p)

−2 1√
−np(k+1)2(p−1)

((p−1)k+p)3

.
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The kurtosis (aka ‘fourth scaled-moment about the mean’) is

α3[Xn,k,p] =

− (k + 1)
2
p4 − 2 (k + 1)

(
k − 3

2 n− 3
)
p3 +

(
6 k2 + (−6n+ 6) k − 3n− 6

)
p2 − 2 k

(
k − 3

2 n+ 4
)
p− k2

np (p− 1) (p (k + 1)− k)
.

For the scaled fifth and sixth moments, see the output file

http://sites.math.rutgers.edu/ zeilberg/tokhniot/oGenPileGames2.txt .

The Two Player version for the (1,−k) case

Since the probability mess function is explicit, given in terms of the Fuss-Catalan numbers, we can

use the Zeilberger algorithm to compute recurrences for the probability of the first player winning,

for symbolic n, and symbolic p (assuming that it is larger than k
k+1 ). Alas, we can not do it for

symbolic k, since the Fuss-Catalan numbers are not bi-holonomic in both n and k.

For the case k = 2 we have the next proposition.

Proposition 10: In the two player version game, if the probability of winning a dollar is p and of

losing two dollars is 1− p , provided 2
3 < p < 1, the probability of the player whose turn is to move

of winning the game is (1 + f(m))/2 where f(m) satisfies the sixth-order linear recurrence

m (p− 1)
4

(m− 5) f (m)

−2 (p− 1)
2 (
m2 − 6m+ 6

)
f (m− 2)− p2 (p− 1)

2 (
2m2 − 13m+ 12

)
f (m− 3)

+ (m− 3) (m− 4) f (m− 4)−p2
(
2m2 − 15m+ 24

)
f (m− 5)+p4 (m− 2) (m− 6) f (m− 6) = 0 ,

subject to the appropriate initial conditions.

For the case k = 3 we have the next proposition.

Proposition 11: In the two player version game, if the probability of winning a dollar is p and

of losing three dollars is 1− p , provided 3
4 < p < 1, the probability of the player whose turn is to

move of winning the game is (1 + f(m))/2 where f(m) satisfies the eighth-order linear recurrence

m (p− 1)
4

(m− 7) f (m)− (p− 1)
2 (

2m2 − 17m+ 24
)
f (m− 3)

−2 p2 (p− 1)
2 (
m2 − 9m+ 12

)
f (m− 4) + (m− 4) (m− 6) f (m− 6)

−p2
(
2m2 − 21m+ 48

)
f (m− 7) + p4 (m− 3) (m− 8) f (m− 8) = 0 ,

subject to the appropriate initial conditions.

For the case k = 4 we have the next proposition.
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Proposition 12: In the two player version game, if the probability of winning a dollar is p and

of losing four dollars is 1 − p , provided 4
5 < p < 1, the probability of the player whose turn is to

move of winning the game is (1 + f(m))/2 where f(m) satisfies the tenth-order linear recurrence

m (p− 1)
4

(m− 9) f (m)− 2 (p− 1)
2 (
m2 − 11m+ 20

)
f (m− 4)

−p2 (p− 1)
2 (

2m2 − 23m+ 40
)
f (m− 5) + (m− 5) (m− 8) f (m− 8)

−p2
(
2m2 − 27m+ 80

)
f (m− 9) + p4 (m− 4) (m− 10) f (m− 10) = 0 ,

subject to the appropriate initial conditions.

For the case k = 5 we have the next proposition.

Proposition 13: In the two player version game, if the probability of winning a dollar is p and of

losing five dollars is 1− p , provided 5
6 < p < 1, the probability of the player whose turn is to move

of winning the game is (1 + f(m))/2 where f(m) satisfies the 12th-order linear recurrence

m (p− 1)
4

(m− 11) f (m)− (p− 1)
2 (

2m2 − 27m+ 60
)
f (m− 5)

−2 p2 (p− 1)
2 (
m2 − 14m+ 30

)
f (m− 6) + (m− 6) (m− 10) f (m− 10)

−p2
(
2m2 − 33m+ 120

)
f (m− 11) + p4 (m− 5) (m− 12) f (m− 12) = 0 ,

subject to the appropriate initial conditions.

Winning k dollars or losing one dollar

This case is more complicated than the previous one, and we will have to treat one k at a time

even for the expectation. Also, we only consider the case of reaching at least one dollar for the first

time, rather than the more general case of reaching n dollars for the first time.

Now our alphabet is { k , −1 } and, in terms of lattice paths, the atomic steps are (1, k) and

(1,−1).

Since the last step of such a path must be (1, k) it can terminate at y = k, or y = k− 1, . . . , y = 1,

so we are forced to consider, in addition to U0,0 the set of paths that start at y = 0 and end at

y = 0 and never go above the x-axis, also U0,−1 the set of paths that start at y = 0 and end at

y = −1 and never go above the x-axis, all the way to U0,−(k−1), the set of paths that start at y = 0

and end at y = −(k − 1) and never go above the x-axis.

Such a word looks like

U0,0 k ∨ U0,−1 k ∨ . . . ∨ U0,−(k−1) k .

Let U := U0,0. Then the weight-enumerator of U is F (xkx
k
−1) where F (X) is as above, the solution

of

F (X) = 1 + XF (X)k+1 .
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It can be seen that U0,−r = (1U0,0)r, hence its weight-enumerator is (x−1 F (X))r.

Substituting for x−1 = p t and xk = (1− p) t, we get the following human-generated proposition.

Proposition 14: Suppose that at each round, you lose one dollar with probability p and win k

dollars with probability 1− p, and you quit as soon as you reach at least 1 dollar. If 0 < p < k
k+1

then, of course, sooner or later, you will reach your goal. Let g(t), be the formal power series, in t,

satisfying the algebraic equation

g(t) − 1 − pk (1− p) tk+1 g(t)k+1 = 0 .

The probability generating function, let’s call it f(t), for the number of rounds until having a

positive capital is

f(t) = (1− p) t g(t)

k−1∑
i=0

(p t g(t))i .

If you will apply implicit differentiation to the defining equation of g(t), and then express f ′(t) in

terms of g(t) and g′(t) and then plug-in t = 1, you will get 0/0. It turns out that the expressions

for the expectation, variance, and higher moments are no longer rational functions of p, but are

roots of algebraic equations. The reason is that when t = 1, 1 is a double (or higher-order) root

of the defining equation for the probability itself f(1) = 1.

Since Maple knows how to differenitate, both explicitly and implicitly, our beloved computer can

handle it all automatically, and get explicit algebraic equation for symbolic p, or specific algebraic

numbers for specific p < k
k+1 , alas only for one k at a time.

We have the following computer-generated proposition for the case k = 2, i.e. for the gambling

options {−1, 2}, with Pr(−1) = p and Pr(2) = 1− p.

Proposition 15: Let X be the random variable ‘number of rounds until you reach positive capital’

if you start at 0, and at each round, you lose 1 dollar with probability p and win 2 dollars with

probability 1− p. Assume that p < 2
3 .

The expectation is given by

E[X] =
3 p+

√
− (3 p+ 1) (−1 + p)− 1

2 p (2 − 3 p)

For the variance, and third through the sixth moment, see

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oGenPileGames3.txt .

Note that for the most interesting case, p = 1
2 , the expectation is the beautiful number 1 +

√
5

(twice the golden ratio). This is so nice that we will single it out.

Beautiful Corollary: If a one-dimensional random walker starts at 0 and moves one step back

with probability 1
2 and two steps forward with probability 1

2 and keeps going until he is at a
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location ≥ 1 for the first time, the expected number of steps that he takes is twice the Golden

Ratio, i.e. 1 +
√

5.

For k ≥ 3 and symbolic p, things get too complicated to reproduce here, so let’s just mention the

expectations for a few cases for the most interesting case, p = 1
2 .

k = 3: The expected duration of a random walk with Pr(−1) = Pr(3) = 1
2 until reaching a location

≥ 1 for the first time is the positive root of

x3 − 4x− 4 = 0 ,

that equals 2.382975767906237494 . . . .

k = 4: The expected duration of a random walk with Pr(−1) = Pr(4) = 1
2 until reaching a location

≥ 1 for the first time is the positive root of

3x4 + 4x3 − 8x2 − 24x− 16 = 0 ,

that equals 2.1561901553356811691 . . . .

k = 5: The expected duration of a random walk with Pr(−1) = Pr(5) = 1
2 until reaching a location

≥ 1 for the first time is the positive root of

2x5 + 5x4 − 20x2 − 32x− 16 = 0 ,

that equals 2.07050432323944926 . . . .

k = 6: The expected duration of a random walk with Pr(−1) = Pr(6) = 1
2 until reaching a location

≥ 1 for the first time is the positive root of

5x6 + 18x5 + 20x4 − 40x3 − 144x2 − 160x− 64 = 0 ,

that equals 2.0333823565252879532 . . . .

k = 7: The expected duration of a random walk with Pr(−1) = Pr(7) = 1
2 until reaching a location

≥ 1 for the first time is the positive root of

3x7 + 14x6 + 28x5 − 112x3 − 224x2 − 192x− 64 = 0 ,

that equals 2.0162018012796575781 . . . .

k = 8: The expected duration of a random walk with Pr(−1) = Pr(8) = 1
2 until reaching a location

≥ 1 for the first time is the positive root of

7x8 + 40x7 + 112x6 + 112x5 − 224x4 − 896x3 − 1280x2 − 896x− 256 = 0 ,

that equals 2.00796926912597191 . . . .
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