Yet Another Proof for the Enumeration of Labelled Trees

Based on a comment of Herb Wilf (spelled out by D. Zeilberger)

[Exclusive for DZ’s mailing list, and his ftp and www forum.]

In [1], a very short and elementary proof of Abel’s identity was given, using the methods introduced in [2]. For the sake of completeness we reproduce the statement and proof.

Theorem: For \(n \geq 0 \):
\[
\sum_{k=0}^{n} \binom{n}{k} (r + k)^{k-1}(s - k)^{n-k} = \frac{(r + s)^n}{r}
\] \hspace{1cm} (1)

Proof ([1]): Let \(F_{n,k}(r,s) \) and \(a_n(r,s) \) denote, respectively, the summand and sum on the LHS of (1), and let \(G_{n,k} := (s - n) \binom{n-1}{k}(r + k)^{k-1}(s - k)^{n-k-1} \). Since
\[
F_{n,k}(r,s) - sF_{n-1,k}(r,s) - (n+r)F_{n-1,k}(r+1,s-1) + (n-1)(r+s)F_{n-2,k}(r+1,s-1) = G_{n,k} - G_{n,k+1},
\]
(check!), we have by summing from \(k = 0 \) to \(k = n \), thanks to the telescoping on the right:
\[
a_n(r,s) - sa_{n-1}(r+1,s-1) + (n-1)(r+s)a_{n-2}(r+1,s-1) = 0.
\]
Since \((r+s)^n \cdot r^{-1}\) also satisfies this recurrence (check!) with the same initial conditions \(a_0(r,s) = r^{-1} \) and \(a_1(r,s) = (r+s) \cdot r^{-1} \), (1) follows \(\square \).

Now, letting \(n \rightarrow n-2 \), \(r := 1 \), and \(s := n-1 \), and setting \(b_n := n^{n-2} \), one obtains the recurrence:
\[
b_n = \sum_{k=0}^{n-2} \binom{n-2}{k} b_{k+1}[(n-k-1)b_{n-k-1}].
\] \hspace{1cm} (2)

Let \(t_n \) be the number of labelled trees on \(n \) vertices, then:
\[
t_n = \sum_{k=0}^{n-2} \binom{n-2}{k} t_{k+1}[(n-k-1)t_{n-k-1}].
\] \hspace{1cm} (3)

Indeed every labelled tree \(T \) on \(\{1,2,\ldots,n\} \) gives rise to a unique triple \((T',T'',S)\), where \(T'' \) is the rooted tree to which the vertex 2 belongs, in the forest resulting from deleting 1 (rooted at the vertex connected to 1), \(T' \) is the tree obtained from \(T \) by deleting \(T'' \), and \(S \) is the set of labels (in addition to 1) participating in \(T' \). Now sum over all possible \(k := |S| \), to get (3).

Since \(b_1 = t_1 \), and \(b_n \) and \(t_n \) satisfy the same recurrence, it follows that we have the \((n^{n-2})\)th proof of Cayley’s theorem.

References

1