
The Reciprocal of 1+ab+aabb+aaabbb+... for NON-COMMUTING a and b,
Catalan numbers and non commutative quadratic equations

Section 1

Our goal is to find an inverse of the series
∑

n≥0 anbn where a and b are non-commuting variables.
The answer to this question is given by the following theorem.

Let a, b, x be (completely!) non-commuting variables (“indeterminates”). Define a sequence of
polynomials dn(a, b, x) ( n ≥ 1) recursively as follows:

d1(a, b, x) = 1 , (1a)

dn(a, b, x) = dn−1(a, b, x)x +
n−1∑
k=2

dn−k(a, b, x) a dk(a, b, x) b (n ≥ 2) .(1b)

Also define the sequence of polynomials cn(a, b, x) as follows:

cn(a, b, x) = a dn(a, b, x) b (n ≥ 1) .

Theorem 1:

1−
∞∑

n=1

cn(a, b, ab− ba) =

∑
n≥0

anbn

−1

.

It follows immediately that the number of monomials in a, b and x in the polynomial dn(a, b, x) is
the (n−1)-th Catalan number. We will give an algebraic and a combinatorial proof of the theorem.

The simplest algebraic proof was given by C. Reutenauer. It is based on two lemmas.

Lemma 2: Let S be a formal series in a and b such that S = 1 + aSb. The inverse of S is given
by series 1− aDb where D satisfies the equation

D = 1 + D(x− ab) + DaDb (2)

and x = ab− ba.

Proof: We are looking for the inverse of S in the form 1− C where C = aDb.

We have
CS = (1− S−1)S = S − 1 = aSb.

Hence
C(1 + aSb) = aSb,
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C + CaSb = aSb,

aDb + aDbaSb = aSb.

So,

D + DbaS = S

and
D(1 + baS) = S

or
D(S−1 + ba) = 1.

It implies that
D(1− C + ba) = 1

and
D = 1 + DaDb−Dba

which immediately implies equation (2).

Lemma 3: Let the degree of indeterminants a and b in equation (2) equals one and the degree of
x equals two. Then the solution of equation (2) is given by formula

D =
∑
n≥1

dn(a, b, x)

where polynomials dn(a, b, x) satisfy equations (1).

Proof: Note that D =
∑∞

n=1 dn where dn = dn(a, b, x) are homogeneous polynomials in a and b of
degree 2n− 2, n = 1, 2, . . ..

The terms of degree 0 and 2 are: d1 = 1 and d2 = x.

Take the term of degree 2n− 2, n ≥ 3:

dn = dn−1(x− ab) +
n−1∑
k=1

dn−kadkb = dn−1(x− ab) + dn−1ab + d1adn−1b +
n−2∑
k=2

dn−kck =

= dn−1x + adn−1b +
n−2∑
k=2

dn−kck.

QED

Let S =
∑

n≥0 anbn. Then S satisfies equation S = 1 + aSb and Theorem 1 follows from Lemmas
2 and 3.
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Combinatorial Proof: Consider the set of lattice walks in the 2D rectangular lattice, starting
at the origin, (0, 0) and ending at (n − 1, n − 1), where one can either make a horizontal step
(i, j) → (i + 1, j), (weight a), a vertical step (i, j) → (i, j + 1), (weight b) or a diagonal step
(i, j) → (i+1, j +1), (weight x), always staying in the region i ≥ j, and where you can neither have
a horizontal step followed immediately by a vertical step, nor a vertical step followed immediately
by a horizontal step. In other words, you may never venture to the region i < j, and you can have
neither the Hebrew letter Nun (alias the mirror-image of the Latin letter L) nor the Greek letter
Γ when you draw the path on the plane. The weight of a path is the product (in order!) of the
weights of the individual steps.

For example, when n = 2 the only possible path is (0, 0) → (1, 1), whose weight is x.

When n = 3 we have two paths. The path (0, 0) → (1, 1) → (2, 2) whose weight is x2 and the path
(0, 0) → (1, 0) → (2, 1) → (2, 2) whose weight is axb.

When n = 4 we have five paths:

The path (0, 0) → (1, 1) → (2, 2) → (3, 3) whose weight is x3,

the path (0, 0) → (1, 0) → (2, 1) → (3, 2) → (3, 3) whose weight is ax2b,

the path (0, 0) → (1, 0) → (2, 1) → (2, 2) → (3, 3) whose weight is axbx,

the path (0, 0) → (1, 1) → (2, 1) → (3, 2) → (3, 3) whose weight is xaxb, and

the path (0, 0) → (1, 0) → (2, 0) → (3, 1) → (3, 2) → (3, 3) whose weight is a2xb2.

It is very well-known, and rather easy to see, that the number of such paths are given by the
Catalan numbers C(n− 1), http://oeis.org/A000108 .

We claim that the weight-enumerator of the set of such walks equals dn(a, b, x). Indeed, since the
walk ends on the diagonal, at the point (n− 1, n− 1), the last step must be either a diagonal step

(n− 2, n− 2) → (n− 1, n− 1) ,

whose weight-enumerator, by the inductive hypothesis is dn−1(a, b, x)x, or else let k be the smallest
integer such that the walk passed through (n − k − 1, n − k − 1) (i.e. the penultimate encounter
with the diagonal). Note that k can be anything between 2 and n− 1. The weight-enumerator of
the set of paths from (0, 0) to (n − k − 1, n − k − 1) is dn−k(a, b, x), and the weight-enumerator
of the set of paths from (n − k − 1, n − k − 1) to (n − 1, n − 1) that never touch the diagonal, is
adk(a, b, x)b. So the weight-enumerator is dn−k(a, b, x) a dk(a, b, x)b giving the above recurrence for
dn(a, b, x).

It follows that cn(a, b, x) = adn(a, b, x)b is the weight-enumerator of all paths from (0, 0) to (n, n)
as above with the additional property that except at the beginning ((0, 0)) and the end ((n, n))
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they always stay strictly below the diagonal.

Now what does cn(a, b, ab − ba) weight-enumerate? Now there is a new rule in Manhattan, “no
shortcuts”, one may not walk diagonally. So every diagonal step (i, j) → (i + 1, j + 1) must decide
whether

to go first horizontally, and then vertically (i, j) → (i + 1, j) → (i + 1, j + 1), replacing x by ab, or

to go first vertically, and then horizontally (i, j) → (i, j + 1) → (i + 1, j + 1), replacing x by −ba.

This has to be decided, independently for each of the diagonal steps that formerly had weight x.
So a path with r diagonal steps gives rise to 2r new paths with sign (−1)s where s is the number
of places where it was decided to go through the second option.

So cn(a, b, ab− ba) is the weight-enumerators of pairs of paths [P,K] where P is the original path
featuring a certain (possibly zero) number of diagonal steps r, and K is one of its 2r ”children”,
paths with only horizontal and vertical steps, and weight ±weight(C), where we have a plus-sign if
an even number of the r diagonal steps became vertical-then-horizontal (i.e. ba) and a minus-sign
otherwise.

As we look at the weights of the children K sometimes we have the same path coming from
different parents. Let’s call a pair [P,K] a bad if the path C has a “ba” strictly-under the diagonal,
i.e. a “vertical step followed by a horizontal step” that does not touch the diagonal. Write K as
K = w1(ba)sw2 where w1 does not have any sub-diagonal ba’s and s is as large as possible. Then
the parent must be either of the form P = W1x

sW2 where the xs corresponds to the (ba)s, or of
the form P ′ = W1bx

s−1aW2. In the former case attach [W1x
sW2,K] to [W1bx

s−1aW2,K] and in
the latter case vice-versa. This is a weight-preserving and sign-reversing involution among the
bad pairs, so they all kill each other.

It remains to weight-enumerate the good pairs. It is easy to see that the good pairs are pairs [P,K]
where K has the form K = ai1bi1ai2bi2 . . . aisbis for some s ≥ 1 and integers i1, . . . , is ≥ 1 summing
up to n (this is called a composition of n). It is easy to see that for each such K, (coming from a
good pair [P,K])there can only be one possible parent P . The sign of a good pair

[P, ai1bi1ai2bi2 . . . aisbis ] ,

is (−1)s−1, since it touches the diagonal s− 1 times, and each of these touching points came from
an x that was turned into −ba.

So 1−
∑∞

n=1 cn(a, b, ab− ba) turned out to be the sum of all the weights of compositions (vectors
of positive integers) (i1, . . . , is) with the weight (−1)sai1bi1 · · · aisbis over all compositions, but the
same is true of∑

n≥0

anbn

−1

=

1 +
∑
n≥1

anbn

−1

= 1 +
∞∑

s=1

(−1)s

∑
n≥1

anbn

s

.
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QED!

Section 2

In this section we discuss solutions of noncommutative quadratic equation (2) using quasidetermi-
nants. Let A = (aij), i, j ≥ 1 be a Jacobi matrix, i.e. aij = 0 if |i− j| > 1. Set T = I − A, where
I is the infinite identity matrix. Recall that

|T |−1
11 = 1 +

∑
a1j1aj1j2aj2j3 . . . ajk1

where the sum is taken over all tuples (j1, j2, . . . , jk), j1, j2, . . . , jk ≥ 1, k ≥ 1.

Also,
|T |11 = 1− a11 −

∑
a1j1aj1j2aj2j3 . . . ajk1

where the sum is taken over all tuples (j1, j2, . . . , jk), j1, j2, . . . , jk > 1, k ≥ 1.

Assume that the degree of all diagonal elements aiiis two and the degree of all elements aij such
that i 6= j is one. Then

|T |−1
11 = 1 +

∑
n≥1

tn (3)

where tn is homogeneous polynomial of degree 2n in variables aij .

In particular,
t1 = a11 + a12a21,

t2 = a2
11 + a11a12a21 + a12a21a11 + a12a22a21 + (a12a21)2 + a12a23a32a21.

Problem: Find the number of monomial terms in tn.

Proposition 4: Set a11 = 0. Then the number of monomials in each each tn is the n-th Catalan
number.

Proof: ??

Let now a, x, b be formal variables, the degree of a and b is one and the degree of x is two. Set
aii = x− ab, ai,i+1 = a, ai+1,i = b for all i. By the definition of quasideterminants, we have

|T |11 = 1− x + ab− a|T |−1
11 b.

Denote |T |−1
11 by D. Then last equation can be written as

D−1 = 1− x + ab− aDb
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or
D = D(x− ab)−DaDb

which is exactly our equation (2).

Section 3. Inversion of 1− aDb in general case.

Let D = 1 + d1(a, b, x) + d2(a, b, x) + . . . and polynomials dn(a, b, x) satisfy equations (1) without
any assumptions on x. We are looking for the inversion of the series 1− aDb in the form

1 + au1b + au2b + ...

where the degree of un is 2n− 2, n ≥ 1. Then

u1 = 1,

u2 = ba + x,

u3 = (ba)2 + xba + bax + axb + x2,

u4 = (ba)3 + x(ba)2 + baxba + (ba)2x + a2xb2 + axb2a + ba2xb

+x2ba + xbax + bax2 + ax2b2 + axbx + xaxb + x3,

and so on.

Problem: How to write a recurrence relations on un similar to relations (1). It must imply that
the number of terms for un is the n-th Catalan number. It also must show that if x = ab− ba then
un = an−1bn−1.

We may set x = 1 and get

u1 = 1, u2 = ba + 1, u3 = (ba)2 + 2ba + ab + 1,

u4 = (ba)3 + 3(ba)2 + ab2 + ba2b + a2b2 + 3ba + 3ab + 1.

Problem: How to describe polynoials un for this and other specializations? Any relations with
known polynomials?
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