The Reciprocal of 1+ab-+aabb+aaabbb+-... for NON-COMMUTING a and b,
Catalan numbers and non commutative quadratic equations

Section 1

Our goal is to find an inverse of the series ) ., a"b"™ where a and b are non-commuting variables.
The answer to this question is given by the following theorem.

Let a,b, x be (completely!) non-commuting variables (“indeterminates”). Define a sequence of
polynomials d,,(a,b,z) ( n > 1) recursively as follows:

dy(a,b,x) =1 , (la)

n—1

dn(a,b,x) =dp—1(a,b,x)x + Z dp—r(a,b,x)adg(a,byx)b (n>2) .(1b)
k=2

Also define the sequence of polynomials ¢, (a,b, x) as follows:

cn(a,b,x) = ady(a,b,x)b (n>1)

Theorem 1: .

1-— icn(a,b, ab — ba) = Za"b”

n=1 n>0

It follows immediately that the number of monomials in a,b and x in the polynomial d,(a,b,x) is
the (n—1)-th Catalan number. We will give an algebraic and a combinatorial proof of the theorem.

The simplest algebraic proof was given by C. Reutenauer. It is based on two lemmas.

Lemma 2: Let S be a formal series in a and b such that S = 1 + aSb. The inverse of S is given
by series 1 — aDb where D satisfies the equation

D =1+ D(xz —ab) + DaDb (2)
and x = ab — ba.
Proof: We are looking for the inverse of .S in the form 1 — C where C' = aDb.

‘We have
CS:(l—S_l)S:S—lzaSb.

Hence

C(1 + aSb) = aSh,
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C + CaSb = aSh,
aDb + aDbaSb = aSbh.

So,

D+ DbaS =S
and

D(1+4baS) =S
or

D(S™ +ba) =1.
It implies that
D(1—-C+ba)=1

and
D =1+ DaDb — Dba

which immediately implies equation (2).

Lemma 3: Let the degree of indeterminants a and b in equation (2) equals one and the degree of
x equals two. Then the solution of equation (2) is given by formula

D= dn(a,b,x)

n>1
where polynomials d,,(a, b, x) satisfy equations (1).

Proof: Note that D = > | d,, where d,, = d,,(a, b, z) are homogeneous polynomials in a and b of
degree 2n — 2, n=1,2,....

The terms of degree 0 and 2 are: d; = 1 and dy = .

Take the term of degree 2n — 2, n > 3:

n—1 n—2
dy =dn_1(x —ab) + Y dp_padpb = dp_1(z — ab) + dp_1ab + drady_1b+ > _ dn_pey =
k=1 k=2
n—2
=dp 12+ adn 1b+ Y dn k.
k=2

QED

Let S =5,-,a"b". Then S satisfies equation S = 1+ aSb and Theorem 1 follows from Lemmas
2 and 3.



Combinatorial Proof: Consider the set of lattice walks in the 2D rectangular lattice, starting
at the origin, (0,0) and ending at (n — 1,n — 1), where one can either make a horizontal step
(1,7) — (i + 1,7), (weight a), a vertical step (i,j) — (i, + 1), (weight b) or a diagonal step
(i,7) — (i+1,7+1), (weight x), always staying in the region ¢ > j, and where you can neither have
a horizontal step followed immediately by a vertical step, nor a vertical step followed immediately
by a horizontal step. In other words, you may never venture to the region ¢ < j, and you can have
neither the Hebrew letter Nun (alias the mirror-image of the Latin letter L) nor the Greek letter
I’ when you draw the path on the plane. The weight of a path is the product (in order!) of the
weights of the individual steps.

For example, when n = 2 the only possible path is (0,0) — (1, 1), whose weight is x.

When n = 3 we have two paths. The path (0,0) — (1,1) — (2,2) whose weight is z? and the path
(0,0) — (1,0) — (2,1) — (2,2) whose weight is axb.

When n = 4 we have five paths:

The path (0,0) — (1,1) — (2,2) — (3, 3) whose weight is 22,

the path (0,0) — (1,0) — (2,1) — (3,2) — (3, 3) whose weight is az?b,

the path (0,0) — (1,0) — (2,1) — (2,2) — (3,3) whose weight is axbx,

the path (0,0) — (1,1) — (2,1) — (3,2) — (3,3) whose weight is zazb, and

the path (0,0) — (1,0) — (2,0) — (3,1) — (3,2) — (3, 3) whose weight is a?zb.

It is very well-known, and rather easy to see, that the number of such paths are given by the
Catalan numbers C'(n — 1), http://oeis.org/A000108 .

We claim that the weight-enumerator of the set of such walks equals d,,(a, b, ). Indeed, since the
walk ends on the diagonal, at the point (n — 1,n — 1), the last step must be either a diagonal step

m-2,n—-2)—(n-1n-1) ,

whose weight-enumerator, by the inductive hypothesis is d,,_1(a, b, )z, or else let k be the smallest
integer such that the walk passed through (n — k —1,n — k — 1) (i.e. the penultimate encounter
with the diagonal). Note that k can be anything between 2 and n — 1. The weight-enumerator of
the set of paths from (0,0) to (n —k —1,n — k — 1) is d,,_r(a, b, x), and the weight-enumerator
of the set of paths from (n —k —1,n —k — 1) to (n — 1,n — 1) that never touch the diagonal, is
adg(a,b, x)b. So the weight-enumerator is d,,_(a, b, ) a di(a, b, x)b giving the above recurrence for
dy(a,b,x).

It follows that ¢, (a,b, x) = ad,(a,b,z)b is the weight-enumerator of all paths from (0,0) to (n,n)
as above with the additional property that except at the beginning ((0,0)) and the end ((n,n))
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they always stay strictly below the diagonal.
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Now what does ¢, (a, b, ab — ba) weight-enumerate? Now there is a new rule in Manhattan, “no
shortcuts”, one may not walk diagonally. So every diagonal step (i,5) — (¢ + 1, j + 1) must decide
whether

to go first horizontally, and then vertically (i,5) — (¢ +1,j) — (i + 1,7 + 1), replacing = by ab, or
to go first vertically, and then horizontally (i,7) — (i,7 + 1) — (i + 1,j + 1), replacing x by —ba.

This has to be decided, independently for each of the diagonal steps that formerly had weight x.
So a path with r diagonal steps gives rise to 2" new paths with sign (—1)° where s is the number
of places where it was decided to go through the second option.

So ¢, (a,b,ab — ba) is the weight-enumerators of pairs of paths [P, K] where P is the original path
featuring a certain (possibly zero) number of diagonal steps r, and K is one of its 2" ”children”,
paths with only horizontal and vertical steps, and weight +weight(C'), where we have a plus-sign if
an even number of the r diagonal steps became vertical-then-horizontal (i.e. ba) and a minus-sign

otherwise.

As we look at the weights of the children K sometimes we have the same path coming from
different parents. Let’s call a pair [P, K] a bad if the path C has a “ba” strictly-under the diagonal,
i.e. a “vertical step followed by a horizontal step” that does not touch the diagonal. Write K as
K = wy(ba)*wy where w; does not have any sub-diagonal ba’s and s is as large as possible. Then
the parent must be either of the form P = Wyx*Wy where the 2° corresponds to the (ba)®, or of
the form P’ = Wibx*~taW,. In the former case attach [Wiz°Wa, K| to [Wibz®~taWs, K] and in
the latter case vice-versa. This is a weight-preserving and sign-reversing involution among the
bad pairs, so they all kill each other.

It remains to weight-enumerate the good pairs. It is easy to see that the good pairs are pairs [P, K]
where K has the form K = a*b'1a’2b® ... a’ b’ for some s > 1 and integers i1,...,7, > 1 summing
up to n (this is called a composition of n). It is easy to see that for each such K, (coming from a
good pair [P, K])there can only be one possible parent P. The sign of a good pair

[P,a"b™a™b"2 .. . a'b'] |

is (—1)*~!, since it touches the diagonal s — 1 times, and each of these touching points came from
an x that was turned into —ba.

So1—3"" cn(a,b,ab—ba) turned out to be the sum of all the weights of compositions (vectors
of positive integers) (iy,...,is) with the weight (—1)%a’ b’ - - - a’b’s over all compositions, but the
same is true of

-1 -1 s

Z a™b" =1+ Z a™b" =14 i(—l)s Z a™b"
s=1

n>0 n>1 n>1



QED!
Section 2

In this section we discuss solutions of noncommutative quadratic equation (2) using quasidetermi-
nants. Let A = (ai;), i,7 > 1 be a Jacobi matrix, i.e. a;; =0 if [i — j| > 1. Set T'= 1 — A, where
I is the infinite identity matrix. Recall that

—1
T =14 a15,05,,0505, - - 4,1
where the sum is taken over all tuples (ji,j2,...,Jk), 1,72y, Jk > 1, k> 1.

Also,
T =1—a1 — E A1y Ay o Wi - -+ Ay 1

where the sum is taken over all tuples (ji,j2,...,Jk), J1,J2,---,Jk > 1, k> 1.

Assume that the degree of all diagonal elements a;;is two and the degree of all elements a;; such
that i # j is one. Then

T =1+ ta  (3)

n>1

where t,, is homogeneous polynomial of degree 2n in variables a;;.

In particular,

t1 = a11 + ai2a21,

2 2
ty = ajy + a11a12021 + 12021011 + @12a22021 + (a12a21)° + a12a23a32a2;1 .

Problem: Find the number of monomial terms in ¢,,.

Proposition 4: Set a;; = 0. Then the number of monomials in each each ¢,, is the n-th Catalan

number.
Proof: 77

Let now a,x,b be formal variables, the degree of a and b is one and the degree of x is two. Set
ajj = — ab, a; ;41 = a,a;4+1,; = b for all <. By the definition of quasideterminants, we have

|11 =1 — 2+ ab— a|T|;1'b.

Denote |T|;;' by D. Then last equation can be written as
D '=1—xz+ab—aDb

5



or

D = D(z — ab) — DaDb

which is exactly our equation (2).

Section 3. Inversion of 1 — aDb in general case.

Let D =1+ di(a,b,z) + da(a,b,z) + ... and polynomials d,,(a, b, z) satisfy equations (1) without

any assumptions on x. We are looking for the inversion of the series 1 — aDb in the form
14+ auib + ausb + ...
where the degree of u, is 2n — 2, n > 1. Then
up =1,

us = ba + x,
uz = (ba)? + xba + bax + axb + 22,
ug = (ba)® + 2(ba)? + bazba + (ba)*z + a®zb® + axb®a + ba’xb
2b2

+22ba + xbax + bax? + ax’b? + arbr + raxb + x>,

and so on.
Problem: How to write a recurrence relations on u,, similar to relations (1). It must imply that

the number of terms for w,, is the n-th Catalan number. It also must show that if © = ab — ba then
nflbnfl.

Up = a
We may set x = 1 and get
up =1, ug =ba+1, us= (ba)?+ 2ba + ab+ 1,

uy = (ba)® 4+ 3(ba)? + ab® + ba®b + a®b* + 3ba + 3ab + 1.

Problem: How to describe polynoials u, for this and other specializations? Any relations with
known polynomials?



