The Reciprocal of $1+a b+a a b b+a a a b b b+\ldots$ for NON-COMMUTING a and b, Catalan numbers and non commutative quadratic equations

Section 1

Our goal is to find an inverse of the series $\sum_{n \geq 0} a^{n} b^{n}$ where a and b are non-commuting variables. The answer to this question is given by the following theorem.

Let a, b, x be (completely!) non-commuting variables ("indeterminates"). Define a sequence of polynomials $d_{n}(a, b, x)(n \geq 1)$ recursively as follows:

$$
\begin{gather*}
d_{1}(a, b, x)=1 \quad, \quad(1 a) \\
d_{n}(a, b, x)=d_{n-1}(a, b, x) x+\sum_{k=2}^{n-1} d_{n-k}(a, b, x) a d_{k}(a, b, x) b \quad(n \geq 2) \tag{1b}
\end{gather*}
$$

Also define the sequence of polynomials $c_{n}(a, b, x)$ as follows:

$$
c_{n}(a, b, x)=a d_{n}(a, b, x) b \quad(n \geq 1)
$$

Theorem 1:

$$
1-\sum_{n=1}^{\infty} c_{n}(a, b, a b-b a)=\left(\sum_{n \geq 0} a^{n} b^{n}\right)^{-1}
$$

It follows immediately that the number of monomials in a, b and x in the polynomial $d_{n}(a, b, x)$ is the $(n-1)$-th Catalan number. We will give an algebraic and a combinatorial proof of the theorem.

The simplest algebraic proof was given by C. Reutenauer. It is based on two lemmas.
Lemma 2: Let S be a formal series in a and b such that $S=1+a S b$. The inverse of S is given by series $1-a D b$ where D satisfies the equation

$$
\begin{equation*}
D=1+D(x-a b)+D a D b \tag{2}
\end{equation*}
$$

and $x=a b-b a$.

Proof: We are looking for the inverse of S in the form $1-C$ where $C=a D b$.
We have

$$
C S=\left(1-S^{-1}\right) S=S-1=a S b
$$

Hence

$$
C(1+a S b)=a S b
$$

$$
\begin{gathered}
C+C a S b=a S b, \\
a D b+a D b a S b=a S b .
\end{gathered}
$$

So,

$$
D+D b a S=S
$$

and

$$
D(1+b a S)=S
$$

or

$$
D\left(S^{-1}+b a\right)=1
$$

It implies that

$$
D(1-C+b a)=1
$$

and

$$
D=1+D a D b-D b a
$$

which immediately implies equation (2).
Lemma 3: Let the degree of indeterminants a and b in equation (2) equals one and the degree of x equals two. Then the solution of equation (2) is given by formula

$$
D=\sum_{n \geq 1} d_{n}(a, b, x)
$$

where polynomials $d_{n}(a, b, x)$ satisfy equations (1).
Proof: Note that $D=\sum_{n=1}^{\infty} d_{n}$ where $d_{n}=d_{n}(a, b, x)$ are homogeneous polynomials in a and b of degree $2 n-2, n=1,2, \ldots$.

The terms of degree 0 and 2 are: $d_{1}=1$ and $d_{2}=x$.
Take the term of degree $2 n-2, n \geq 3$:

$$
\begin{gathered}
d_{n}=d_{n-1}(x-a b)+\sum_{k=1}^{n-1} d_{n-k} a d_{k} b=d_{n-1}(x-a b)+d_{n-1} a b+d_{1} a d_{n-1} b+\sum_{k=2}^{n-2} d_{n-k} c_{k}= \\
=d_{n-1} x+a d_{n-1} b+\sum_{k=2}^{n-2} d_{n-k} c_{k} .
\end{gathered}
$$

QED
Let $S=\sum_{n \geq 0} a^{n} b^{n}$. Then S satisfies equation $S=1+a S b$ and Theorem 1 follows from Lemmas 2 and 3.

Combinatorial Proof: Consider the set of lattice walks in the 2D rectangular lattice, starting at the origin, $(0,0)$ and ending at $(n-1, n-1)$, where one can either make a horizontal step $(i, j) \rightarrow(i+1, j)$, (weight a), a vertical step $(i, j) \rightarrow(i, j+1)$, (weight b) or a diagonal step $(i, j) \rightarrow(i+1, j+1)$, (weight x), always staying in the region $i \geq j$, and where you can neither have a horizontal step followed immediately by a vertical step, nor a vertical step followed immediately by a horizontal step. In other words, you may never venture to the region $i<j$, and you can have neither the Hebrew letter Nun (alias the mirror-image of the Latin letter L) nor the Greek letter Γ when you draw the path on the plane. The weight of a path is the product (in order!) of the weights of the individual steps.

For example, when $n=2$ the only possible path is $(0,0) \rightarrow(1,1)$, whose weight is x.
When $n=3$ we have two paths. The path $(0,0) \rightarrow(1,1) \rightarrow(2,2)$ whose weight is x^{2} and the path $(0,0) \rightarrow(1,0) \rightarrow(2,1) \rightarrow(2,2)$ whose weight is $a x b$.

When $n=4$ we have five paths:
The path $(0,0) \rightarrow(1,1) \rightarrow(2,2) \rightarrow(3,3)$ whose weight is x^{3},
the path $(0,0) \rightarrow(1,0) \rightarrow(2,1) \rightarrow(3,2) \rightarrow(3,3)$ whose weight is $a x^{2} b$,
the path $(0,0) \rightarrow(1,0) \rightarrow(2,1) \rightarrow(2,2) \rightarrow(3,3)$ whose weight is axbx,
the path $(0,0) \rightarrow(1,1) \rightarrow(2,1) \rightarrow(3,2) \rightarrow(3,3)$ whose weight is $x a x b$, and
the path $(0,0) \rightarrow(1,0) \rightarrow(2,0) \rightarrow(3,1) \rightarrow(3,2) \rightarrow(3,3)$ whose weight is $a^{2} x b^{2}$.
It is very well-known, and rather easy to see, that the number of such paths are given by the Catalan numbers $C(n-1)$, http://oeis.org/A000108.

We claim that the weight-enumerator of the set of such walks equals $d_{n}(a, b, x)$. Indeed, since the walk ends on the diagonal, at the point $(n-1, n-1)$, the last step must be either a diagonal step

$$
(n-2, n-2) \rightarrow(n-1, n-1)
$$

whose weight-enumerator, by the inductive hypothesis is $d_{n-1}(a, b, x) x$, or else let k be the smallest integer such that the walk passed through $(n-k-1, n-k-1)$ (i.e. the penultimate encounter with the diagonal). Note that k can be anything between 2 and $n-1$. The weight-enumerator of the set of paths from $(0,0)$ to $(n-k-1, n-k-1)$ is $d_{n-k}(a, b, x)$, and the weight-enumerator of the set of paths from $(n-k-1, n-k-1)$ to $(n-1, n-1)$ that never touch the diagonal, is $a d_{k}(a, b, x) b$. So the weight-enumerator is $d_{n-k}(a, b, x) a d_{k}(a, b, x) b$ giving the above recurrence for $d_{n}(a, b, x)$.

It follows that $c_{n}(a, b, x)=a d_{n}(a, b, x) b$ is the weight-enumerator of all paths from $(0,0)$ to (n, n) as above with the additional property that except at the beginning $((0,0))$ and the end $((n, n))$
they always stay strictly below the diagonal.

Now what does $c_{n}(a, b, a b-b a)$ weight-enumerate? Now there is a new rule in Manhattan, "no shortcuts", one may not walk diagonally. So every diagonal step $(i, j) \rightarrow(i+1, j+1)$ must decide whether
to go first horizontally, and then vertically $(i, j) \rightarrow(i+1, j) \rightarrow(i+1, j+1)$, replacing x by $a b$, or to go first vertically, and then horizontally $(i, j) \rightarrow(i, j+1) \rightarrow(i+1, j+1)$, replacing x by $-b a$.

This has to be decided, independently for each of the diagonal steps that formerly had weight x. So a path with r diagonal steps gives rise to 2^{r} new paths with $\operatorname{sign}(-1)^{s}$ where s is the number of places where it was decided to go through the second option.

So $c_{n}(a, b, a b-b a)$ is the weight-enumerators of pairs of paths $[P, K]$ where P is the original path featuring a certain (possibly zero) number of diagonal steps r, and K is one of its 2^{r} "children", paths with only horizontal and vertical steps, and weight \pm weight (C), where we have a plus-sign if an even number of the r diagonal steps became vertical-then-horizontal (i.e. $b a$) and a minus-sign otherwise.

As we look at the weights of the children K sometimes we have the same path coming from different parents. Let's call a pair $[P, K]$ a bad if the path C has a " $b a$ " strictly-under the diagonal, i.e. a "vertical step followed by a horizontal step" that does not touch the diagonal. Write K as $K=w_{1}(b a)^{s} w_{2}$ where w_{1} does not have any sub-diagonal $b a$'s and s is as large as possible. Then the parent must be either of the form $P=W_{1} x^{s} W_{2}$ where the x^{s} corresponds to the $(b a)^{s}$, or of the form $P^{\prime}=W_{1} b x^{s-1} a W_{2}$. In the former case attach $\left[W_{1} x^{s} W_{2}, K\right]$ to $\left[W_{1} b x^{s-1} a W_{2}, K\right]$ and in the latter case vice-versa. This is a weight-preserving and sign-reversing involution among the bad pairs, so they all kill each other.

It remains to weight-enumerate the good pairs. It is easy to see that the good pairs are pairs $[P, K]$ where K has the form $K=a^{i_{1}} b^{i_{1}} a^{i_{2}} b^{i_{2}} \ldots a^{i_{s}} b^{i_{s}}$ for some $s \geq 1$ and integers $i_{1}, \ldots, i_{s} \geq 1$ summing up to n (this is called a composition of n). It is easy to see that for each such K, (coming from a good pair $[P, K])$ there can only be one possible parent P. The sign of a good pair

$$
\left[P, a^{i_{1}} b^{i_{1}} a^{i_{2}} b^{i_{2}} \ldots a^{i_{s}} b^{i_{s}}\right]
$$

is $(-1)^{s-1}$, since it touches the diagonal $s-1$ times, and each of these touching points came from an x that was turned into $-b a$.

So $1-\sum_{n=1}^{\infty} c_{n}(a, b, a b-b a)$ turned out to be the sum of all the weights of compositions (vectors of positive integers) $\left(i_{1}, \ldots, i_{s}\right)$ with the weight $(-1)^{s} a^{i_{1}} b^{i_{1}} \cdots a^{i_{s}} b^{i_{s}}$ over all compositions, but the same is true of

$$
\left(\sum_{n \geq 0} a^{n} b^{n}\right)^{-1}=\left(1+\sum_{n \geq 1} a^{n} b^{n}\right)^{-1}=1+\sum_{s=1}^{\infty}(-1)^{s}\left(\sum_{n \geq 1} a^{n} b^{n}\right)^{s}
$$

QED!

Section 2

In this section we discuss solutions of noncommutative quadratic equation (2) using quasideterminants. Let $A=\left(a_{i j}\right), i, j \geq 1$ be a Jacobi matrix, i.e. $a_{i j}=0$ if $|i-j|>1$. Set $T=I-A$, where I is the infinite identity matrix. Recall that

$$
|T|_{11}^{-1}=1+\sum a_{1 j_{1}} a_{j_{1} j_{2}} a_{j_{2} j_{3}} \ldots a_{j_{k} 1}
$$

where the sum is taken over all tuples $\left(j_{1}, j_{2}, \ldots, j_{k}\right), j_{1}, j_{2}, \ldots, j_{k} \geq 1, k \geq 1$.
Also,

$$
|T|_{11}=1-a_{11}-\sum a_{1 j_{1}} a_{j_{1} j_{2}} a_{j_{2} j_{3}} \ldots a_{j_{k} 1}
$$

where the sum is taken over all tuples $\left(j_{1}, j_{2}, \ldots, j_{k}\right), j_{1}, j_{2}, \ldots, j_{k}>1, k \geq 1$.
Assume that the degree of all diagonal elements $a_{i i}$ is two and the degree of all elements $a_{i j}$ such that $i \neq j$ is one. Then

$$
\begin{equation*}
|T|_{11}^{-1}=1+\sum_{n \geq 1} t_{n} \tag{3}
\end{equation*}
$$

where t_{n} is homogeneous polynomial of degree $2 n$ in variables $a_{i j}$.
In particular,

$$
\begin{gathered}
t_{1}=a_{11}+a_{12} a_{21} \\
t_{2}=a_{11}^{2}+a_{11} a_{12} a_{21}+a_{12} a_{21} a_{11}+a_{12} a_{22} a_{21}+\left(a_{12} a_{21}\right)^{2}+a_{12} a_{23} a_{32} a_{21}
\end{gathered}
$$

Problem: Find the number of monomial terms in t_{n}.
Proposition 4: Set $a_{11}=0$. Then the number of monomials in each each t_{n} is the n-th Catalan number.

Proof: ??
Let now a, x, b be formal variables, the degree of a and b is one and the degree of x is two. Set $a_{i i}=x-a b, a_{i, i+1}=a, a_{i+1, i}=b$ for all i. By the definition of quasideterminants, we have

$$
|T|_{11}=1-x+a b-a|T|_{11}^{-1} b .
$$

Denote $|T|_{11}^{-1}$ by D. Then last equation can be written as

$$
D^{-1}=1-x+a b-a D b
$$

or

$$
D=D(x-a b)-D a D b
$$

which is exactly our equation (2).

Section 3. Inversion of $1-a D b$ in general case.

Let $D=1+d_{1}(a, b, x)+d_{2}(a, b, x)+\ldots$ and polynomials $d_{n}(a, b, x)$ satisfy equations (1) without any assumptions on x. We are looking for the inversion of the series $1-a D b$ in the form

$$
1+a u_{1} b+a u_{2} b+\ldots
$$

where the degree of u_{n} is $2 n-2, n \geq 1$. Then

$$
\begin{gathered}
u_{1}=1, \\
u_{2}=b a+x, \\
u_{3}=(b a)^{2}+x b a+b a x+a x b+x^{2}, \\
u_{4}=(b a)^{3}+x(b a)^{2}+b a x b a+(b a)^{2} x+a^{2} x b^{2}+a x b^{2} a+b a^{2} x b \\
+x^{2} b a+x b a x+b a x^{2}+a x^{2} b^{2}+a x b x+x a x b+x^{3},
\end{gathered}
$$

and so on.
Problem: How to write a recurrence relations on u_{n} similar to relations (1). It must imply that the number of terms for u_{n} is the n-th Catalan number. It also must show that if $x=a b-b a$ then $u_{n}=a^{n-1} b^{n-1}$.

We may set $x=1$ and get

$$
\begin{gathered}
u_{1}=1, \quad u_{2}=b a+1, \quad u_{3}=(b a)^{2}+2 b a+a b+1, \\
u_{4}=(b a)^{3}+3(b a)^{2}+a b^{2}+b a^{2} b+a^{2} b^{2}+3 b a+3 a b+1 .
\end{gathered}
$$

Problem: How to describe polynoials u_{n} for this and other specializations? Any relations with known polynomials?

