
Variations on the Missionaries and Cannibals Problem

George SPAHN and Doron ZEILBERGER

Dedicated to Harry Dym (b. Jan. 26, 1938) on his forthcoming eighty-fifth birthday

Abstract: We explore both automated and human approaches to the generalized Missionaries and

Cannibals problem.

Keywords: River-Crossing Problems; Enumerating paths in directed graphs; Symbolic Computa-

tion.

2020 MSC: 05C57

A Classic Riddle

Many of us have heard, and quite a few of us solved, the following famous puzzle ([Wi1], and

references thereof), that goes back (at least!) to Tartaglia (of cubic equation fame).

Three missionaries and three cannibals must cross a river using a boat which can carry at most two

people, under the constraint that, for both banks, if there are missionaries present on the bank, they

cannot be outnumbered by cannibals (if they were, the cannibals would eat the missionaries). The

boat cannot cross the river by itself with no people on board.

This brainteaser was used as a challenge at the very early days of AI (see, e.g. [R], p. 51), and was

also a toy model in Engineering Design, see the wonderful book [D] (pp. 139-143) by the [biological]

brother of the academic father of DZ (and hence the academic grandfather of GS).

As indicated in [Wi1] (see also [FCD] and [PS]), in order to solve it nowadays, one sets up a

directed graph with the vertices labeled by triples of non-negative integers [m, c, b] where

• m is the number of missionaries currently at the first bank

• c is the number of cannibals currently at the first bank

• b = 1 if the boat is currently at the first bank, and b = 0 if it is at the second bank.

It follows that the numbers of missionaries and cannibals in the second bank are 3−m and 3− c

respectively.

In order for no missionary to be eaten, we need at all times:

• If m > 0 then m ≥ c

• If 3−m > 0 then 3−m ≥ 3− c, or equivalently if m < 3 then c ≥ m.

1

The edges are

• [m, c, 1]→ [m− e1, c− e2, 0]

• [m, c, 0]→ [m + e1, c + e2, 1]

where 0 < e1 + e2 ≤ 2, and both vertices are legal, where the boat carries e1 missionaries and e2
cannibals.

To solve the puzzle all we need is find a shortest path from the initial state [3, 3, 1] to the final

state [0, 0, 0]. This can be done with the famous Dijkstra algorithm [Wi2], that we adapted to the

present problem.

Let the Computer Do it

Now that we have such high-level computer languages (Maple in our case), it is an easy programming

exercise to solve not only the original puzzle, but the following general version, for any specific,

numerical parameters M , C, B, and d, and not only find one solution but all of them.

So we set up to write Maple code for finding all solutions for any inputted M,C,B, d, to the

following family of puzzles.

M missionaries and C cannibals must cross a river using a boat which can carry at most B people,

under the constraint that, for both banks, and for the boat, if there are missionaries and cannibals

present there, the number of missionaries must exceed the number of cannibals but at least d.

[if d > 0 this means that the cannibals are stronger than the missionaries, so one needs a higher

‘safety margin’].

Now the number of missionaries and cannibals in the second bank are M−m and C−c respectively.

In order for no missionary to be eaten, we need at all times

• If m > 0 and c > 0 then m− c ≥ d

• If M −m > 0 and C − c > 0 then (M −m)− (C − c) ≥ d

The edges are:

• [m, c, 1]→ [m− e1, c− e2, 0]

• [m, c, 0]→ [m + e1, c + e2, 1]

where 0 < e1 + e2 ≤ B and both vertices are legal, and (e1, e2) satisfies the following condition:

• If e1 > 0 and e2 > 0, then e1 − e2 ≥ d.

2

This is implemented in procedure

Sols(M,C,B,d) ,

in our Maple package Cannibals.txt, obtainable from the front of this article

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/cannibals.html .

In particular, to get all four solutions for the original puzzle, type

Sols(3,3,2,0); ,

and get in 0.04 seconds the following four solutions:

• [[3, 3, 1], [2, 2, 0], [3, 2, 1], [3, 0, 0], [3, 1, 1], [1, 1, 0], [2, 2, 1],[0,

2, 0], [0, 3, 1], [0, 1, 0], [0, 2, 1], [0, 0, 0]] ;

• [[3, 3, 1], [2, 2, 0],[3, 2, 1], [3, 0, 0], [3, 1, 1], [1, 1, 0], [2, 2, 1], [0,

2, 0], [0, 3, 1], [0, 1, 0], [1, 1, 1], [0, 0, 0]] ;

• [[3, 3, 1], [3, 1, 0], [3, 2, 1], [3, 0, 0], [3, 1, 1], [1, 1, 0], [2, 2, 1], [0,

2, 0], [0, 3, 1], [0, 1, 0], [0, 2, 1], [0,0, 0]] ;

• [[3, 3, 1], [3, 1, 0], [3, 2, 1], [3, 0, 0], [3, 1, 1], [1, 1, 0], [2,2, 1], [0,

2, 0], [0, 3, 1], [0, 1, 0], [1, 1, 1], [0, 0, 0]] .

For any solution, S, procedure SO(M,C,B,d,S), in our Maple package Cannibals.txt, spells out

the solution, very verbosely. See the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oCannibals1.txt .

To see all 25 solutions with 5 missionaries and 5 cannibals, boat-capacity 3 and safety-margin still

0, as well as the spelled-out solution for one of the solutions see

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oCannibals2.txt .

The above-mentioned front of our article contains a few more sample solutions, but readers (who

have access to Maple) are welcome to find solutions to many other cases.

Paths in General Directed Graphs and Linear Algebra

After we completed the above Maple package, Cannibals.txt, that focuses on one specific class

of problems, we realized that we may just as well treat the general case of finding all walks in an

arbitrary directed graph, from one designated vertex to another. So we wrote a much more general

Maple package, DiGpaths.txt, available from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/DiGpaths.txt .

3

In order to represent a directed graph in the computer, we used the data structure list of sets

[N1, ..., Nn] .

Here we assumed that the set of vertices is {1, . . . , n}, and for each vertex 1 ≤ i ≤ n, Ni is the set

of vertices j such that there is a directed edge from vertex i to vertex j. In other words the set of

outgoing neighbors of i.

We also make the convention that the originating vertex is 1 and the terminal vertex is n. Our

function RG(n,p) can construct many random examples. We want to find the set of shortest paths

from 1 to n. In order to do that, we recursively construct longer and longer self-avoiding paths

until we encounter the terminal vertex n. If after n steps we did not reach it, we declare failure.

For any specific class of puzzles, e.g. Missionaries and Cannibals with general parameters, or other

‘river-crossing’ riddles, we construct the relevant directed graph. See procedure MCgraph(M,C,B,d)

in DiGpaths.txt.

If we only want to find the number of such paths then we can use linear algebra. Recall that the

adjacency matrix of a directed graph G is the 0− 1 matrix defined by

Aij =

{
1, if there is a directed edge from i to j;
0, otherwise.

The number of paths of length k between vertex i and vertex j is the (i, j) entry of Ak. Since we

are only interested in shortest paths, their length is at most n, hence in order to find the length

of the shortest paths, and their number, we keep raising the power Ak until, for the first time, the

(ij) entry is non-zero. That first successful k would give us the desired minimal length, and the

corresponding (ij) entry is the desired number of shortest paths (i.e. the number of solutions to

our puzzle). Note that this is number-crunching, and it only tells you whether a solution exists,

and if it does, the number of solutions, but it does not tell you how to actually solve the puzzle,

i.e. to find at least one legal path in the underlying graph.

This is implemented in procedure NuPaths of the Maple package DiGpaths.txt .

Since Maple can do symbol-crunching so well, we can use linear algebra not just to find the

number of paths, but to actually find all of them. Define the symbolic adjacency matrix by

Sij =

{
aij , if there is a directed edge from i to j;
0, otherwise.

Then, since we already know, from the numeric adjacency matrix, what is the smallest k such that

the (i, j) entry of Ak is non-zero, and that means that for that very same k, Sk is also non-zero,

that (i, j) entry of Sk gives a certain polynomial in the indeterminates aij (where ij is an edge)

where each monomial corresponds to a path that is easy to reconstruct, since we are given the set

of participating edges in each such path.

4

This is implemented in procedure WtPath in the Maple package DiGpaths.txt. Alas, to our

disappointment, for larger graphs, this took much longer than the straightforward approach of

generating all paths, mentioned above (procedure PathsG(G) in the Maple package DiGpaths.txt,

and SolveMC(M,C,B,d) when applied to Missionaries and Cannibals problems).

One can also generate interesting sequences for ‘infinite families’ of Missionaries and Cannibals

puzzles. Procedure SeqrBd(r,B,d,K) outputs the first K terms of the sequence enumerating the

number of solutions to the Missionaries and Cannibals problem with

i missionaries, i + r cannibals, boat side B and safety margin d.

See the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oDiGpaths2.txt .

In particular SeqrBd(5,3,1,8) outputs

[4, 4, 13, 21, 34, 55, 89, 144] .

This leads to the following conjecture.

Conjecture: The number of solutions to the Missionaries and Cannibals problem where there are

i + 5 missionaries, i cannibals , the Boat capacity is 3 and the safety margin is 1 is the Fibonacci

number Fi+4, for i ≥ 3.

In the next section we will describe an even more efficient approach for generating such conjectures.

Sometimes the enumerating sequences are eventually constant. The next proposition was first

conjectured experimentally, using our Maple packages, and later we found a human-generated proof.

Proposition: The number of solutions with i missionaries and i cannibals, boat size 4, and safety

margin 0, is always 361, for all i ≥ 7.

Human-Generated Proof: If n is sufficiently large compared to B, the boat size, then at some

point during the solution there will need to be many missionaries and cannibals on both sides of

the river. When this happens, the only legal moves are sending across boats that contain an equal

number of missionaries and cannibals. If the missionaries exceed the cannibals in a location, that

implies that the cannibals exceed the missionaries in another location, which is an illegal state.

Let (a, b) denote a move that sends a missionaries and b cannibals across the river. Let −(a, b) be

a similar moves that brings people in the other direction. If the boat size is less than 4, and there

are more than 5 missionaries and cannibals on both sides of the river, the only legal moves will be

±(1, 1). It is clear that no progress can be made with only these moves. This shows that for B < 4,

and sufficiently large n, there will be no solutions. It is not too hard to show that for B = 2 there

5

exist solutions only when n < 4, and that for B = 3 there exist solutions only when n < 6.

When B = 4, we now can make progress for large n. We can alternate moves (2, 2) and −(1, 1)

to slowly ferry the people across without violating the rules. Using this approach we can solve the

puzzle in 2n−3 moves. It is clear that during the middle of a solution, it is not possible to be more

efficient. But maybe we can be more efficient at the start or end, by exploiting the fact that the

cannibals are allowed outnumber the missionaries if either are not present on a side of the river.

Let’s say the start of the solution is the moves before 4 missionaries and 4 cannibals have crossed.

Once 4 and 4 have crossed, we are now restricted to alternating (2, 2) and −(1, 1). After the first

two moves, at most 3 people will have crossed. Thus it is clear that it is not possible to do the start

in 3 moves. Thus the minimum possible number of moves for the start of the solution is 5 moves.

It turns out there are exactly 19 ways to perform the start of the puzzle in 5 moves. Symmetrically,

there are also 19 ways to perform the end of a solution as efficiently as possible. For n ≥ 7, the

start of the solution and the end of solution do not intersect, so we conclude that for n ≥ 7, the

number of solutions that use the fewest numbers of moves will be 19 · 19 = 361.

Using “High School Algebra” for Efficient Enumeration

While finding one solution (or path) can be done fast, using Dijkstra’s algorithm, finding all of

them takes much longer, since there are exponentially many of them. Of course we can do it as in

the previous section, transcribing the puzzle into a directed graph, finding the adjacency matrix,

etc. but the resulting graph has special structure, and it would be nice to take advantage of this.

We will now describe a naive ‘high-school algebra’ approach for quickly counting the number of

solutions (as opposed to finding all of them, or even one of them). In particular, if we find out,

for a particular choice of parameters (for example, (M,C,B, d) = (4, 4, 2, 0)), that the number of

solutions is 0, we would know that there is no way of solving the puzzle.

Let’s consider a more general river-crossing puzzle, that includes the even-more-famous-and-older

Cabbage-Sheep-Wolf puzzle [Wi3].

There are k species, let’s call them 1, . . . , k, and there are A1, A2, . . . , Ak individuals from each kind.

If at any time, there are a1, . . . , ak individuals of species 1, . . . , k respectively, at the starting bank,

then the vectors [a1, a2, . . . , ak] must satisfy a set of conditions C(a1, . . . , ak). There is another set

of conditions C ′(b1, . . . , bk) regarding what the boat can carry.

Let’s introduce k ‘formal’ variables (alias indeterminates) x1,xk and define the crossing poly-

nomial

P (x1, . . . , xk) :=
∑

(b1,...,bk)

xb1
1 · · ·x

bk
k ,

where the sum is over all vectors of non-positive integers (b1, . . . , bk) satisfying the conditions

C ′(b1, . . . , bk).

For example, for the original puzzle where x1 is the variable corresponding to missionaries and x2

6

is the variable corresponding to cannibals (and the boat size is 2)

P (x1, x2) = x1 + x2
1 + x2 + x2

2 + x1x2 .

Let’s also introduce a “clean-up” linear operator T that is defined on polynomials in the variables

x1, . . . , xk, by first defining it on monomials xa1
1 · · ·x

ak

k by

T (xa1
1 · · ·x

ak

k) =

{
xa1
1 · · ·x

ak

k , if C(a1, . . . , ak) is true ;
0, otherwise,

and extending it linearly.

We start with the monomial representing the initial position xA1
1 · · ·x

Ak

k . Going in the forward

direction corresponds to multiplying by

P (x−11 , . . . , x−1k) ,

since you reduce the population of the first bank, while going back to the starting bank corresponds

to multiplying by

P (x1, . . . , xk) ,

since you increase the population of the first bank.

At any stage, after multiplying by P (x1, . . . , xk) or P (x−11 , . . . , x−1k), we have to “clean up” by

applying the operator T .

This leads to the following sequence of polynomials

f0(x1, . . . , xk) = xA1
1 · · ·x

Ak

k ,

and for i = 1, 2, . . .

gi(x1, . . . , xk) = T [P (x−11 , . . . , x−1k)fi−1(x1, · · · , xk)]

fi(x1, . . . , xk) = T [P (x1, . . . , xk)gi(x1, · · · , xk)] .

We keep going until we reach an i where gi has non-zero constant term. If we do reach such

an i we know that the puzzle can be solved in 2i − 1 crossing ((i − 1) double crossings followed

by the final one), and the constant term of that lucky gi is the number of solutions to the puzzle

(equivalently the number of shortest paths). Of course it is very possible that we will never reach

that state.

Since any shortest path must be self-avoiding, we have an upper bound for the length of a shortest

path, if it exists. Let’s call the number of states T . If by the time i = T + 1 none of the gi have a

non-zero constant term, we find out that there are no solutions.

7

Let’s illustrate our method with the original puzzle of 3 missionaries, 3 cannibals, boat size 2, and

safety margin 0. Recall that for this case P (x1, x2) = x1 + x2
1 + x2 + x2

2 + x1x2.

f0 = x3
1 x

3
2 .

f0 ·P (x−11 , x−12) = (x3
1 x

3
2) ·(x−11 +x−21 +x−12 +x−22 +x−11 x−12) = x3

1x
2
2+x2

1x
3
2+x3

1x2+x2
2x

2
1+x1x

3
2 .

“Cleaning up”, i.e. applying T , we get

g1(x1, x2) = x3
1x

2
2 + x3

1x2 + x2
2x

2
1 .

Now going back to the other bank

g1(x1, x2) · P (x1, x2) = (x3
1x

2
2 + x3

1x2 + x2
2x

2
1)(x1 + x2

1 + x2 + x2
2 + x1x2) =

x5
1x

2
2 + x4

1x
3
2 + x3

1x
4
2 + x5

1x2 + 3x4
1x

2
2 + 3x3

1x
3
2 + x2

1x
4
2 + x4

1x2 + 2x3
1x

2
2 + x2

1x
3
2 .

“Cleaning up”, i.e. applying T , by discarding all ‘illegal monomials’, we get

f1(x1, x2) = 3x3
1x

3
2 + 2x3

1x
2
2 .

Moving right along

g2(x1, x2) = 3x3
1x

2
2 + 5x3

1x2 + 5x2
2x

2
1 + 2x3

1 ,

f2(x1, x2) = 13x3
1x

3
2 + 12x3

1x
2
2 + 2x3

1x2 ,

g3(x1, x2) = 13x3
1x

2
2 + 25x3

1x2 + 25x2
2x

2
1 + 14x3

1 + 2x1x2 ,

f3(x1, x2) = 63x3
1x

3
2 + 64x3

1x
2
2 + 16x3

1x2 + 2x2
2x

2
1 ,

g4(x1, x2) = 63x3
1x

2
2 + 127x3

1x2 + 127x2
2x

2
1 + 80x3

1 + 18x1x2 + 2x2
2 ,

f4(x1, x2) = 317x3
1x

3
2 + 334x3

1x
2
2 + 98x3

1x2 + 20x2
2x

2
1 + 2x3

2 ,

g5(x1, x2) = 317x3
1x

2
2 + 651x3

1x2 + 651x2
2x

2
1 + 432x3

1 + 118x1x2 + 22x2
2 + 2x2 ,

f5(x1, x2) = 1619x3
1x

3
2 + 1734x3

1x
2
2 + 550x3

1x2 + 140x2
2x

2
1 + 24x3

2 + 2x1x2 + 2x2
2 ,

and finally:

g6(x1, x2) = 619x3
1x

2
2 + 3353x3

1x2 + 3353x2
2x

2
1 + 2284x3

1 + 690x1x2 + 164x2
2 + 28x2 + 4 .

Success! We have found that with i = 6 gi(x1, x2) has a non-zero constant term, that happens to

be 4. Hence the puzzle can be solved with 2 ·6−1 = 11 crossings, and the number of solutions is 4.

If we try to solve the puzzle with 4 missionaries and 4 cannibals, we get that the gi have no non-zero

constant term for all i ≤ 14, and since there are 13 legal states, it means that there are no solutions.

Since Maple is so good with high-school algebra, this is very fast, and we can investigate many

infinite families, getting similar conjectures to the Fibonacci conjecture from the previous section.

To enjoy 139 such propositions, see

8

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oRiverCrossing2.txt .

Let’s just reproduce one of these conjectures, that we sure are theorems.

Proposition: Let a(n) be the number of ways of safely transporting n+9 missionaries, n cannibals,

with a boat that can have at most two passengers, and such that at no time, at either bank, should

the number of cannibals exceed the number of missionaries (if there are missionaries present), then

∞∑
n=0

a(n)xn =

−1774224x7 − 63279616x6 − 54735368x5 + 31754164x4 − 2667061x3 − 736742x2 − 6726x− 1

4x4 − 384x3 + 337x2 − 39x + 1
.

Let Humans do some General Thinking

We now consider the problem of determining for which values of the parameters there exists a

solution. Again we have:

• M, the number of missionaries, should be at least 1

• C, the number of cannibals, should be at least 1

• B, the boat size, should be at least 2

• d, if both cannibals and missionaries are present (on either side of the river or in the boat) then

the number of missionaries must be at least the number of cannibals plus d.

Tackling the problem in general is hard, but there are a lot of cases where it is easy to show that

a solution exists. We do so by demonstrating a strategy that illustrates how to solve the puzzle

in a specific case, and then mention the requirements on the parameters for that strategy to be

successful. The strategies provide no insight into what happens when their requirements are not

met, so these strategies give a set of sufficient conditions for when a solutions exists, but do not

provide necessary conditions.

“Two Boat Strategy”: This strategy only requires two people to be in the boat at any given

time (hence the name), and therefore works for any value of B ≥ 2. To start, we can send a single

missionary across by sending 2 missionaries across in the boat, and then having one come back with

the boat. Call this sequence of 2 moves P. By repeating P, we can send missionaries across until

P is no longer legal. We can send over M − C − d− 1 missionaries in this way. Now consider the

same operation, but with cannibals instead of missionaries. Call this operation Q. If Q is legal, we

can do Q, and then complete the puzzle by alternating P and Q until all the cannibals are across.

The requirement for Q to be legal is that (M − C − d− 1) ≥ 2 + d which simplifies to:

M − C ≥ 2d + 3

9

We now know that if the above condition is satisfied, then the puzzle is solvable.

“Big Boat Strategy #1”: If the boat is big enough relative to the number of Cannibals, we can

send all of the missionaries across before sending any cannibals across. Similar to Two Boat, we

start by sending M − C − d − 1 missionaries across and bringing the boat back. The number of

missionaries remaining is then C + d + 1. If

B ≥ C + d + 1

we can proceed to send the rest of the missionaries over, send B−1 back, use them to ferry a single

cannibal across, send the cannibal back, and then the cannibals can all ferry themselves across.

“Big Boat Strategy #2”: This case is very trivial, but does require its own approach. If the

boat is so big that it can carry all the missionaries in it, then we can use this strategy. Send 2

cannibals across, send 1 back, send all the missionaries over, send 1 cannibal back, send the rest of

the cannibals across.

B ≥M, C ≥ 2

“Split Cannibals Strategy”: In this strategy we send half of the cannibals over, and then all

the missionaries over. It is similar to Big Boat in that it only works if the Boat is large compared

to half the number of cannibals. The strategy is slightly different depending on if there is an even

number or odd number of cannibals.

First consider the even case. We send over half the cannibals. Then we can send a boat of C/2+d+1

missionaries. This requires

B > C/2 + d + 1

and

M − (C/2 + d + 1) ≥ C/2 + d

which simplifies to

M − C ≥ 2d + 1

Then the missionaries can ferry themselves across, and then the cannibals can ferry themselves

across.

In the odd case, we send dC/2e cannibals across, then dC/2e + d + 1 missionaries across, and we

can proceed similarly if

B > dC/2e+ d + 1

and

M − (dC/2e+ d + 1) ≥ bC/2c+ d

which simplifies to

M − C ≥ 2d + 1

10

However, it is still sometimes possible if

B = bC/2c+ d + 1

This is an open problem.

We can combine the even and odd cases and conclude that the strategy can be applied when

M − C ≥ 2d + 1 AND B > dC/2e+ d + 1

“Simultaneous Ferry Strategy”:

Here we start by sending d missionaries over, and then we repeatedly send d + 1 missionaries and

1 cannibal over, and d missionaries back. Since cannibals and missionaries are in all 3 places at

once, this requires

M − C ≥ 3d

in addition to

B ≥ d + 2

We now summarize the conditions required for each strategy to be applied.

Two Boat M − C ≥ 2d + 3

Big Boat 1 B ≥ C + d + 1

Big Boat 2 B ≥M AND C ≥ 2

Split Can M − C ≥ 2d + 1 AND B > dC/2e+ d + 1

Simul M − C ≥ 3d AND B ≥ d + 2

Also note that the condition that M − C ≥ d is assumed.

The above strategies do not say too much about what happens when d = 0. Since this was the

original version of the puzzle it deserves some extra attention. It turns out that we can do much

better than the listed strategies, and in almost all cases it is very simple to do so. We consider if

there is some slack, that is M > C.

“d=0, M > C”: Send over a boat with 1 missionary and 1 cannibal. Send 1 cannibal back. Call

this operation Q. Repeat Q until all the cannibals are across, then have the missionaries ferry the

remaining missionaries across. Done.

When M = C and B ≥ 4, another simple strategy applies.

“d=0, M =C, B ≥ 4”: Send over 2 missionaries and 2 cannibals. Send 1 missionary and 1

cannibal back. Repeat until everyone is across.

11

The remaining cases are when M = C, and either B = 2 or B = 3. For B = 2 it turns out to be

doable if and only if M = C ≤ 3 and for B = 3 it turns out to be doable if and only if M = C ≤ 5.

These cases are not easily described by a simple strategy and make for a fun puzzle.

Necessary conditions? Are the above conditions necessary for the riddle to be solved? Not

entirely. One example is that sometimes the Split cannibals strategy can still be applied when

the condition is not satisfied. With more computation power, we should get a better idea of any

potential cases where a strategy not described can be used.

References

[D] Clive L. Dym, “Engineering Design, A Synthesis of Views”, Cambridge University Press, 1994.

[FCD] Robert Fraley, Kenneth L. Cooke, and Peter Detrick, Graphical Solution of Difficult Crossing

Puzzles. Mathematics Magazine 39(3) (May 1966). 151-157.

[PS] Ian Pressman and David Singmaster, The jealous husbands and The missionaries and cannibals,

Mathematical Gazette 73, No. 464, (June 1989), 73-81.

[R] Elaine Rich,“Artificial Intelligence”, McGraw Hill, 1983.

[Wi1] Wikipedia, Missionaries and cannibals problem.

[Wi2] Wikipedia, Dijkstra’s algorithm.

[Wi3] Wikipedia, Wolf, goat and cabbage problem

George Spahn and Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick),

Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.

Email: gs828 at math dot rutgers dot edu , DoronZeil] at gmail dot com .

Written: Oct. 21, 2022.

12

