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Blessed are the meek: for they shall inherit the earth (Matthew V.5)

Inequalities are deep, while equalities are shallow. Nevertheless, it sometimes happens that a deep
inequality, A, follows from a mere equality B, which, in turn, follows from a more general, and
trivial2 identity C.

In this note we demonstrate this, following [3], with A:= Bombieri’s norm inequality[2]3, B:= an
identity of Reznick[5], and C := an identity of Beauzamy and Dégot[3]. This exposition differs
from the original only in the punch line: I give a 1-line proof of C, using Chu’s identity.

Let P (x1, . . . , xn) and Q(x1, . . . , xn) be two polynomials in n variables:

P =
∑

i1,...,in≥0

ai1,...,inx
i1
1 · . . . · xin

n , Q =
∑

i1,...,in≥0

bi1,...,inx
i1
1 · . . . · xin

n .

The Bombieri inner product[2] is defined by

[P,Q] :=
∑

i1,...,in≥0

(i1! . . . in!) · ai1,...,inbi1,...,in ,

and the Bombieri norm, by: ‖P‖ :=
√

[P, P ] .

Bombieri’s Inequality A: Let P and Q be any homogeneous polynomials in (x1, . . . , xn), then

‖PQ‖ ≥ ‖P‖‖Q‖ .

In order to state B and C, we need to introduce the following notation. Di := ∂
∂xi

, (i = 1, . . . , n),

P (i1,...,in) := Di1
1 . . . Din

n P , and for any polynomial A(x1, . . . , xn), A(D1, . . . , Dn) denotes the linear
partial differential operator with constant coefficients obtained by replacing xi by Di.

A follows almost immediately from([5][3]):

Reznick’s Identity B: For any polynomials P , Q in n variables:

‖PQ‖2 =
∑

i1,...,in≥0

‖P (i1,...,in)(D1, . . . , Dn)Q(x1, . . . , xn)‖2

i1! · . . . · in!
.

Beauzamy and Dégot’s Identity C: For any polynomials P ,Q,R,S in n variables:
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[PQ,RS] =
∑

i1,...,in≥0

[R(i1,...,in)(D1, . . . , Dn)Q(x1, . . . , xn), P (i1,...,in)(D1, . . . , Dn)S(x1, . . . , xn)]

(i1! . . . in!)
.

Proof of B ⇒ A: Pick the terms for which i1 + . . .+ in equals the (total) degree of P , let’s call it
p, and note that for those (i1, . . . , in), P (i1,...,in)(x1, . . . , xn) = (i1! . . . in!)ai1,...,in , so

∑
i1+...+in=p

‖P (i1,...,in)(D1, . . . , Dn)Q(x1, . . . , xn)‖2

i1! · . . . · in!
=

∑
i1+...+in=p

‖ai1,...,inQ(x1, . . . , xn)‖2 · (i1! · . . . · in!)

=

 ∑
i1+...+in=p

(ai1,...,in)2 · (i1! · . . . · in!)

 ‖Q(x1, . . . , xn)‖2 = ‖P‖2‖Q‖2 .

Proof of C ⇒ B: Take R = P and S = Q.

Proof of C: Both sides are linear in P , in Q, in R, and in S, so it suffices to take them all to
be typical monomials, (P = xp1

1 · . . . · xpn
n , and similarly for Q,R, and S), for which the assertion

follows immediately by applying Chu’s[4] identity4

∑
i≥0

(
r

i

)(
s

p− i

)
=

(
r + s

p

)
,

to r = rt, s = st, p = pt, (t = 1 . . . n), (using it for i), and taking their product. Q.E.D.
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Added Sept. 24, 2017: Kai-Liang Lin just informed that the so-called Bombieri’s inequality should
be called Neuberger’s inequality, as it was discovered, in 1974, by John M. Neuberger. John M.
Neuberger, ”Norm of symmetric product compared with norm of tensor product”, Linear and
Multilinear Algebra 2(1974), 115-121.

4 Rediscovered in the 18th century by Vandermonde. Proved by counting, in two different ways, the number of ways

of picking p lucky winners out of a set of r boys and s girls.
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