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Abstract. In a delightful article that recently appeared in Mathematics Magazine, David and

Lori Mccune analyze the board game “Count Your Chickens!”, recommended to children three

and up. Alas, they use the advanced theory of Markov chains, that presupposes a knowledge of

linear algebra, that few three-years-olds are likely to understand. Here we present a much simpler,

more intuitive, approach, that while unlikely to be understood by three-year-olds, will probably

be understood by a smart 14-year-old. Moreover, our approach accomplishes much more, and is

more efficient. It uses symbolic, rather than numeric computation. The article is accompanied

by a general Maple package, CountChickens.txt, that can handle, in a few seconds, any such

game, not just this particular one. It is also accompanied by an even more general Maple package

UmbralMarkov.txt that handles any “weighted” (discrete time) Markov chain with any number of

absorbing states.

The Maple packages. This article is accompanied by two Maple packages CountChickens.txt

and UmbralMarkov.txt that can be obtained, along with numerous input and output files, from

the front of this article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/board.html .

The Count Your Chickens! board game

The board game Snakes and Ladders (that became “Chutes and Ladders” in the USA, since snakes

are too scary) is too stressful for the gentle soul of a typical three-year-old, because it has a winner,

and hence a loser. Even Candy Land that involves picking colored cards, rather than spinning a

spinner, is not recommended, since it suffers from the same problem and three-years-olds (and not

only) hate to lose, making them cry. Hence game inventor Peggy Brown came up with a fun, stress-

free, ‘cooperative’ game [B] for kids, where there is only one team and ‘everyone wins together and

loses together’ (so it is really a solitaire game) called “Count Your Chickens!” manufactured and

marketed by the Peaceable Kingdom toy company.

In a delightful article that appeared recently in Mathematics Magazine, the mathematical couple

David and Lori Mccune, who play this game with their young children, use the sophisticated

theory of Markov Chains, that entails a knowledge of matrices - and matrix inverses - to compute

the probability of winning, as well as the expected number of chicks at the end. They got 0.6410

for the former and 39.22 for the latter. Our, simpler, faster, and more efficient approach agrees

with their probability, but gave the more precise value of 0.6410373996231 . . ., and got a slightly

higher value for the expected number of chicks, namely 39.32230439142343 . . .. [MM]’s stated value

of 39.22 rather than the correct 39.322 is probably a misprint.

One of us (DZ) wrote a Maple package, CountChickens.txt, mentioned above, that enabled the

other author (SBE) to find these quantities for any such kind of board game, and go far beyond
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mere probability of winning and expected number of chicks. It uses symbol crunching rather than

number crunching, and has many fewer ‘states’, making the computations extremely fast.

But let us first define an ‘abstract’ Count Your Chickens! game.

Let N and K be two positive integers. The game consists of

• A board with N + 1 squares where the 1st location is the starting place of Mama Chicken and

N + 1 is the terminal square. Each square is either empty or labeled with one of K animals.

• a spinner with K+1 choices, all equally likely, labeled by the K animals, plus an extra one called

the Fox.

• a subset of {2, . . . , N + 1} called the set of blue squares.

The rules are as follows. Mama Chicken starts out at location 1. At every turn, the player spins

the spinner. If it is a Fox, then you lose a chick (if you currently have no chicks, then nothing

happens) and stay where you are. Otherwise you go to the next location labeled by the animal

that you got. The three-year-old counts the number of squares moved and collects that number of

chicks. If the new location is a blue square, then you get an extra chick.

Sooner or later, with probability 1, you would get to the terminal square, N + 1 that is labeled by

all the K animals.

You win the game if you have at least N chicks, and otherwise you lose.

In the simplified example of [MM], N=8, K=2, the board is

[START,EMPTY, SHEEP,COW,EMPTY,COW,EMPTY, SHEEP, {COW,SHEEP}]

and the set of blue squares is {3, 6}.

In the actual game[B], K = 5 and N = 40. The board is as follows

[0, 0, S, P, T, C,D, P,C,D, S, T, 0, C, P, 0, 0, 0, T, 0, T,D, S,C,D, P, T, 0, S, C, 0, 0, T, P, S,D, 0, S, C, P,

{C,D, P, S, T}] ,

(where C:=Cow, D:=Dog, P:=Pig, S:=Sheep, T:=Tractor, and 0 indicates an empty square) and

the set of blue locations is

{5, 9, 23, 36, 40} .

In [MM] the game is modeled as a Markov chain with a huge number of states, each of the form

(location, Current Number of Chicks), essentially O(N2). For the problem of just computing the

probability of winning (for N = 40), they manage to reduce it to 163 states, but for the harder

problem of computing the expected number of chicks at the end, they needed 668 states, and the

matrices were huge.
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Our approach also makes use of Markov chains, but we don’t need any of the standard theory, and

we never mention the word ‘matrix’. Also our number of states is O(N) (obviously the EMPTY

squares can be ignored). We use Gian-Carlo Rota’s seminal idea of an umbral operator.

Let fi(t) be the probability generating function of landing at square i, where the coefficient of tj is

the probability that you currently have j chicks. To indicate the fact that it is currently at location

i we will denote it by sifi(t). If you got a Fox this becomes sifi(t)/t (followed by replacing t−1 by

1, if necessary). Otherwise, Mama Chicken goes to a new location, let’s call it j, and the new state

becomes sjfi(t)t
j−i if j is not a blue square, and sjfi(t)t

j−i+1 if it is. If we get a power of t larger

than N , we replace it by tN .

This introduces an ‘evolution operation’ that we call the pre-umbra.

In the simplified game used in [MM], (whose board was given above), we have

s1 → 1

3
(s1 + s3 t3−1+1 + s4 t4−1) =

1

3
(s+ s3t3 + s4t3) ,

F (t)s3 → F (t)

3
(
s3

t
+ s4 t4−3 + s6 t6−3+1) =

F (t)

3
(
s3

t
+ s4t+ s6t4) ,

F (t)s4 → F (t)

3
(s4/t+ s6 t6−4+1 + s8 t8−4) =

F (t)

3
(
s4

t
+ s6t3 + s8t4) ,

F (t)s6 → F (t)

3
(s6/t+ s8 t8−6 + s9 t9−6) =

F (t)

3
(
s6

t
+ s8t2 + s9t3) ,

F (t)s8 → F (t)

3
(s8/t+ s9 t9−8 + s9 t9−8) =

F (t)

3
(
s4

t
+ s9t+ s9t2) ,

F (t)s9 → F (t)s9 .

(since 9 is an absorbing state).

These operations must be followed by a “clean-up” operation. Replacing t−1 by 1 (you can’t have

a negative number of chicks), and replacing t9, t10, . . . by t8.

This is the pre-umbra, defined on every monomial si, let’s call it T . If we have a polynomial in s

(and of course t), we extend it by linearity. (Recall that every polynomial is a linear combination

of monomials). We call this linear extension the umbra and also denote it by T .

It is readily seen that applying this operator, starting with the initial state s1, describes the

‘evolution’ of the process.

While, in principle, the game can last forever (if you are really unlucky, you may keep getting

foxes), life is finite, so we decide that we are playing at most M rounds, and make M large enough

so that the probability of lasting longer than M rounds is negligible.

The probability generating function after 1 round is T (s1) = 1
3 (s+ s3t3 + s4t3). After two rounds

is T 2(s1), etc.. Sooner or later we will encounter s9 (in general sN+1), here is our algorithm.
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Let X be yet another variable.

Input: An arbitrary Count Your Chickens! game, G, with N+1 locations, K animals, and a given

set of blue squares, and positive integer M , and two variables t and X.

Output: A polynomial P (X, t) of degree M in X and degree N in t, such that the coefficient of

Xitj is the probability of ending the game after exactly i rounds with a capital of j chicks. It also

outputs the probability of the game lasting longer than M rounds.

We first initialize

Q0(X, t) := s1 = s , R(X, t) := 0 ;

and then for i = 1 . . . ,M , we define, iteratively,

Q′i(X, t) := T (Qi−1(X, t)) ;

Qi(X, t) := Q′i(X, t)− (Coefficient of sN+1 in Q′i(X, t))s
N+1 ;

R(X, t) := R(X, t) + (Coefficient of sN+1 in Q′i(X, t))X
i .

The output is R(X, t), that tells us all the statistical information for finishing in ≤M rounds, and

ε := Q′M+1(1, 1) indicating the probability of not terminating in ≤M moves. You choose M large

enough so that ε is negligible.

Note that R(X, t) is a polynomial of the two variables X and t of degrees M and N respectively.

This contains much more then just the probability of winning and the expected number of chicks. If

ε is tiny we can approximate the real thing by R(X, t) and then R(X, t) is the bi-variate probability

generating function of (NumberOfRounds,NumberOfChicks) at the end.

(More precisely R(X, t)/(1 − ε) is the conditional probability generating function conditioned on

terminating in ≤M rounds. From now on let R(X, t) := R(X, t)/(1− ε) ).

The probability of winning is the coefficient of tN in R(1, t). The expected number of chicks is
d
dtR(1, t). The expected number of rounds is d

dXR(X, 1). Similarly, we can find the variances, the

correlation, and any desired higher moments.

This is implemented in procedure ChSer(CB,t,X,M) in the Maple package CountChickens.txt.

Typing

ChSer(CCb1(),t,X,60);

gives the rather long R(X, t) that can be seen in the output file

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oCountChickens1.txt .

The more succinct command Info(CB,M) uses R(X, t) to extract the desired statistical information.

4



In particular the probability of winning turns out to be

0.6410373996231 . . . ,

and the expected number of chicks, at the end of the game is

39.32230439142343 . . . .

If you have any doubts, we also have a simulation program that plays the game many times, and

takes the empirical averages. See

http://sites.math.rutgers.edu/ zeilberg/tokhniot/oCountChickens4.txt ,

where the game is played one million times, and the empirical averages are very close to the above

theoretical values, confirming that the value of 39.22 chicks in [MM] was a misprint.

We also found that the variance of the number of chicks is 1.2907513179745 . . . that is rather small

(explaining why the simulation values were so good), the skewness is −2.05489022 . . . and the

kurtosis is 7.8590953 . . ..

The average number of rounds happens to be 11.44706710 . . . and its variance is 6.28030112 . . ..

The correlation between the number of chicks and the number of rounds is −0.527785421907 . . ..

The more general Maple package UmbralMarkov.txt

What we have here is what we call a Weighted Markov Chain with one absorbing state. A general

weighted Markov chain with n non-absorbing states and s absorbing states is a directed graph on

n + s vertices where the out-degree of each of the s absorbing states is 0, for each non-absorbing

state there is a probability distribution among its outgoing neighbors, and in addition each edge

carries a weight. You can think of the weight of a directed edge as the price that you have to pay

every time you use it. As you travel along this directed graph, according to the transition matrix,

sooner or later you will wind up in an absorbing state, and then you have a probability distribution

regarding the total price of the travel, for each of these absorbing states. You can also impose a

“minimum” total price and a “maximum” one, like in the ‘Count Your Chickens!’ game.

This more general scenario is implemented in the Maple package UmbralMarkov.txt available from

the url mentioned above, where there is also some sample output.
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