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Bijections for an identity of Young Tableaux

A. Regev and D. Zeilberger

Recall that partition λ = (λ1, . . . , λk) is a weakly-decreasing sequence of positive integers,
and if n = λ1 + · · ·+ λk we say that λ is a partition of n and write λ ` n and l(λ) = k. For
example λ = (3, 3, 2, 2) is a partition of 10 and l(λ) = 4.

A convenient way to represent a partition λ is via its Ferrers diagram, that consists of l(λ)
left-justified lines of dots, such that the i-th row has λi dots. If you replace the dots by
empty boxes, you would get what is called a Young diagram (of shape λ).

Finally recall that a standard Young tableau (SYT) of shape λ ` n is any way of placing the
integers {1, 2, . . . , n} into the empty boxes of the Young diagram in such a way that all the
rows and all the columns are increasing. For example [[1, 2, 4, 6], [3, 5, 7], [8, 9]] is a SYT of
shape (4, 3, 2).

Let H(k, `;n) = {λ ` n | λk+1 ≤ `} denote the partitions of n in the (k, `) hook. For
example, H(k, 0;n) are the partitions of λ ` n with `(λ) ≤ k. Let fλ denote the number of
SYTs of shape λ. One then observes the following intriguing identity:∑

µ∈H(1,1;n+1)

(fµ)2 =
∑

λ∈H(2,0;2n)

fλ.

We give this identity a bijective proof by showing that both∑
µ∈H(1,1;n+1)

(fµ)2, (1)

∑
λ∈H(2,0;2n)

fλ, (2)

can be mapped bijectively to the set of row-increasing matrices of shape (n, n) whose set
of entries is {1, 2, . . . , 2n}, and hence, by composing, to each other. We describe these
bijections. We leave it as pleasant excercises to the reader to formally prove that these are
indeed bijections, by proposing inverse mappings, and proving that the compositions (in
both direction) yield the identity mapping in each case.

The input for both (1) and (2) is a 2× n matrix of integers
a1 . . . an
b1 . . . bn

such that {a1, . . . , an} ∪ {b1, . . . bn} = {1, 2, . . . , 2n},

a1 < a2 < ... < an and
b1 < b2 < ... < bn.
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Description of the bijection for (1)

Here the output is: Two standard tableaux of the same (1, 1)-hook shape. Let
|{a1, . . . , an} ∩ {1, . . . , n}| = k, so {a1, . . . , an} ∩ {1, . . . , n} = {ai1 < · · · < aik}. Form now a
SYT in the (1, 1) hook as follows:
Its (first) row is

1, ai1 + 1, · · · , aik + 1;

its (first) column is made of the remaining integers

{1, . . . n+ 1} \ { 1, ai1 + 1, · · · , aik + 1} = {a′j1 , . . . , a
′
jn−k
}

in increasing order. This gives the first SYT – of (1, 1)-hook shape (k + 1, 1n−k).

It follows that
|{a1, . . . , an} ∩ {n+ 1, . . . , 2n}| = n− k,

so denote
{a1, . . . , an} ∩ {n+ 1, . . . , 2n} = {bt1 < · · · < btn−k}.

Since n+ 1 ≤ bt1 , hence 2 ≤ bt1 − (n− 1). Form the numbers

1 < bt1 − (n− 1) < · · · < btn−k − (n− 1)

and place them, in that (increasing) order, in the column of the second (1,1)-hook shape
tableau, and the complement integers

{1, . . . , n+ 1} \ {1, bt1 − (n− 1), . . . , btn−k − (n− 1)}

in increasing order, in the row (after the corner 1). This gives the second SYT – again of
shape (k + 1, 1n−k). This map is clearly a bijection.

Example of bijection (1). Let n = 5 and consider the 2× 5 array

2, 4, 8, 9, 10

1, 3, 5, 6, 7

Now {2, 4, 8, 9, 10} ∩ {1, . . . , 5} = {2, 4} →+1 {3, 5} so the first row of the first tableau is
(1, 3, 5), hence (n+ 1 = 6) its first column is (1, 2, 4, 6)T .

Also, {2, 4, 8, 9, 10} ∩ {6, . . . , 10} = {8, 9, 10} →−4 {4, 5, 6} so the first column of the
second tableau is (1, 4, 5, 6)T , hence its first row is (1, 2, 3). The pair of these two (1, 1)-
tableaux corresponds to the above array.

Description of the bijection for (2)

Here the output is a SYT whose shape is a ≤ 2-rowed partition of 2n If for all i ai < bi, then
it is a SYT, and do nothing (the output is the input).

Otherwise, let i be the smallest index such that ai > bi. Replace the above array by
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b1 . . . bi−1 bi ai ai+1 . . . an
a1 . . . ai−1 bi+1 bi+2 bi+3 . . . bn

If this is a SYT, then stop. Otherwise continue: Typically we arrive at a two rows array

c1, . . . cs . . . cr
d1 . . . ds

with s ≤ r, r + s = 2n, with c1 < · · · < cr and with d1 < · · · < ds. If cj < dj, j = 1, . . . , s
then this array is SYT and we are done. Otherwise let i be the smallest index such that
ci > di, then replace the above array by

d1 . . . di−1 di ci ci+1 . . . cs−1 . . . cr
c1 . . . ci−1 di+1 di+2 di+3 . . . ds

Continue until a SYT is reached: thus the process stops at a SYT of shape λ ∈ H(2, 0; 2n).

Example of bijection (2). Again consider the same 2 × 5 array as above, then the the
bijection is as follows:

2, 4, 8, 9, 10

1, 3, 5, 6, 7 →

1, 2, 4, 8, 9, 10

3, 5, 6, 7 →

3, 5, 6, 7, 8, 9, 10

1, 2, 4 →

1, 3, 5, 6, 7, 8, 9, 10

2, 4

Remark. Let λ = (λ1, λ2, . . .) be a partition, λ1 ≥ λ2 ≥ . . . and denote
λ+1 = (λ1 + 1, λ2, λ3 . . .). The same bijections can be applied to similar arrays of shape
(n+ 1, n), yielding a bijective proof for the SYT identity∑

µ∈H(2,0;2n+1)

fµ =
∑

λ∈H(1,1;n+2)

fλ · fλ+1

.
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