Bijections for an identity of Young Tableaux

A. Regev and D. Zeilberger

Recall that partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ is a weakly-decreasing sequence of positive integers, and if $n=\lambda_{1}+\cdots+\lambda_{k}$ we say that λ is a partition of n and write $\lambda \vdash n$ and $l(\lambda)=k$. For example $\lambda(3,3,2,2)$ is a partition of 10 and $l(\lambda)=4$. A convenient way to represent a partition λ is via its Ferrers diagram, that consists of $l(\lambda)$ left-justified lines of dots, such that the i-th row has λ_{i} dots. If you replace the dots by empty boxes, you would get what is called a Young diagram. Finally recall that a standard Young Tableau (SYT) of shape $\lambda \vdash n$ is any way of placing the integers $\{1,2, \ldots, n\}$ into the empty boxes of the Young diagram in such a way that all the rows and all the columns are increasing. For example $[[1,2,4,6],[3,5,7],[8,9]]$ is a SYT of shape $(4,3,2)$. Let $H(k, \ell ; n)=\left\{\lambda \vdash n \mid \lambda_{k+1} \leq \ell\right\}$ denote the partitions of n in the (k, ℓ) hook. For example, $H(k, 0 ; n)$ are the partitions of $\lambda \vdash n$ with $\ell(\lambda) \leq k$. Let f^{λ} denote the number of standard Young tableaux (SYT) of shape λ. One then observes the following intriguing identity:

$$
\sum_{\mu \in H(1,1 ; n+1)}\left(f^{\mu}\right)^{2}=\sum_{\lambda \in H(2,0 ; 2 n)} f^{\lambda} .
$$

We give this identity a bijective proof by showing that both

$$
\begin{gather*}
\sum_{\mu \in H(1,1 ; n+1)}\left(f^{\mu}\right)^{2} \tag{1}\\
\sum_{\lambda \in H(2,0 ; 2 n)} f^{\lambda} \tag{2}
\end{gather*}
$$

can be mapped bijectively to the set of row-increasing matrices of shape (n, n), and hence, by composing, to each other. We describe these bijections.
The input for both (1) and (2) is a $2 \times n$ matrix of integers
$a_{1} \ldots a_{n}$
$b_{1} \ldots b_{n}$
such that $\left\{a_{1}, \ldots, a_{n}\right\} \cup\left\{b_{1}, \ldots b_{n}\right\}=\{1,2, \ldots, 2 n\}$,
$a_{1}<a_{2}<\ldots<a_{n}$ and
$b_{1}<b_{2}<\ldots<b_{n}$.

Description of the bijection for (1)

Here the output is: Two standard tableaux of the same $(1,1)$-hook shape. Let $\left|\left\{a_{1}, \ldots, a_{n}\right\} \cap\{1, \ldots, n\}\right|=k$, so $\left\{a_{1}, \ldots, a_{n}\right\} \cap\{1, \ldots, n\}=\left\{a_{i_{1}}<\cdots<a_{i_{k}}\right\}$. Form now a SYT in the $(1,1)$ hook as follows:

Its (first) row is

$$
1, \quad a_{i_{1}}+1, \cdots, a_{i_{k}}+1
$$

its (first) column is made of the remaining integers

$$
\{1, \ldots n+1\} \backslash\left\{1, a_{i_{1}}+1, \cdots, a_{i_{k}}+1\right\}=\left\{a_{j_{1}}^{\prime}, \ldots, a_{j_{n-k}}^{\prime}\right\}
$$

in increasing order. This gives the first SYT - of $(1,1)$-hook shape $\left(k+1,1^{n-k}\right)$.
It follows that

$$
\left|\left\{a_{1}, \ldots, a_{n}\right\} \cap\{n+1, \ldots, 2 n\}\right|=n-k,
$$

so denote

$$
\left\{a_{1}, \ldots, a_{n}\right\} \cap\{n+1, \ldots, 2 n\}=\left\{b_{t_{1}}<\cdots<b_{t_{n-k}}\right\}
$$

Since $n+1 \leq b_{t_{1}}$, hence $2 \leq b_{t_{1}}-(n-1)$. Form the numbers

$$
1<b_{t_{1}}-(n-1)<\cdots<b_{t_{n-k}}-(n-1)
$$

and place them, in that (increasing) order, in the column of the second (1,1)-hook shape tableau, and the complement integers

$$
\{1, \ldots, n+1\} \backslash\left\{1, b_{t_{1}}-(n-1), \ldots, b_{t_{n-k}}-(n-1)\right\}
$$

in increasing order, in the row (after the corner 1). This gives the second SYT - again of shape $\left(k+1,1^{n-k}\right)$. This map is clearly a bijection.

Description of the bijection for (2)

Here the output is a SYT whose shape is a ≤ 2-rowed partition of $2 n$ If for all $i a_{i}<b_{i}$, then it is a SYT, and do nothing (the output is the input).
Otherwise, let i be the smallest index such that $a_{i}>b_{i}$. Replace the above array by
$b_{1} \ldots b_{i-1} \quad b_{i} \quad a_{i} \quad a_{i+1} \quad \ldots \quad a_{n}$
$a_{1} \ldots a_{i-1} b_{i+1} b_{i+2} b_{i+3} \ldots b_{n}$
If this is a SYT, then stop. Otherwise continue: Typically we arrive at a two rows array
$c_{1}, \ldots c_{s} \ldots c_{r}$
$d_{1} \ldots d_{s}$
with $s \leq r, \quad r+s=2 n$, with $c_{1}<\cdots<c_{r}$ and with $d_{1}<\cdots<d_{s}$. If $c_{j}<d_{j}, j=1, \ldots, s$ then this array is SYT and we are done. Otherwise let i be the smallest index such that $c_{i}>d_{i}$, then replace the above array by
$\begin{array}{llllllllll}d_{1} & \ldots & d_{i-1} & d_{i} & c_{i} & c_{i+1} & \ldots & c_{s-1} & \ldots & c_{r} \\ c_{1} & \ldots & c_{i-1} & d_{i+1} & d_{i+2} & d_{i+3} & \ldots & d_{s} & & \end{array}$
Continue until a SYT is reached: thus the process stops at a SYT of shape $\lambda \in H(k, 0 ; 2 n)$.

Remark. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ be a partition, $\lambda_{1} \geq \lambda_{2} \geq \ldots$ and denote
$\lambda^{+1}=\left(\lambda_{1}+1, \lambda_{2}, \lambda_{3} \ldots\right)$. The same bijections can be applied to similar arrays of shape ($n+1, n$), yielding a bijective proof for the SYT identity

$$
\sum_{\mu \in H(2,0 ; 2 n+1)} f^{\mu}=\sum_{\lambda \in H(1,1 ; n+2)} f^{\lambda} \cdot f^{\lambda^{+1}}
$$

Amitai Regev, Department of Mathematics, The Weizmann Institute of Science, Rehovot, Israel. amitai.regev at weizmann.ac.il

Doron Zeilberger, Mathematics Department, Rutgers University (New Brunswick), Piscataway, NJ, USA. zeilberg at math.rutgers.edu .

