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Abstract We discuss, from an experimental mathematics viewpoint, a clas-
sical problem in epidemiology recently discussed by Ewens and Wilf, that
can be formulated in terms of “balls in boxes”, and demonstrate that the
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Each one of r students has to choose from n different parallel Calculus sec-
tions, taught by different professors. Although each professor expects to get
R := r/n students signing-up, most likely, many of them would receive less,
and many of them would receive more. Suppose that Prof. Niles, the most
“popular” professor got as many as m+1 students, is Prof. Niles justified in
assuming that she is more popular than her peers, or did she just “luck-out”?

It is Saturday night, and there are r people who have to decide where to dine,
and they have n restaurants to choose from. Although each restaurant expects
to get R := r/n diners, most likely, many of them would receive less, and
many of them would receive more. Suppose that the Nevada Diner, the most
“popular” restaurant, got as many as m + 1 diners, can they congratulate
themselves for the quality of their food, or ambiance, or location, or can they
only congratulate themselves for being lucky?

Each one of r cases of acute lymphocitic leukemia has to choose one of n towns
(artificially made all with equal-populations) where to happen. Although each
town expects to get R := r/n cases, most likely, many of them would receive
less, and many of them would receive more. Suppose that the Illinois town
Niles had m + 1 cases of that disease, do its people have to be concerned
about their environment, or is it only Lady Luck’s fault?

Of course all these questions have the same answer, and typically one talks
about r balls being placed, uniformly at random, in n boxes, where the largest
number of balls that landed at the same box was m + 1. Yet another way:
A monkey is typing an r-letter word using a keyboard of an alphabet with
n letters, and the most frequent letter showed-up m + 1 times. Does the
typing monkey have a particular fondness for that letter, or is he a truly
uniformly-at-random monkey who does not play favorites with the letters?

Asking the Right Question

As Herb Wilf pointed out so eloquently in his wonderful talk at the confer-
ence W80 (celebrating his 80th birthday) (based, in part, on [2]), using the
depressing disease formulation, the right questions are not:

“What is the probability that Nilini would get so many (m + 1 of them)
prom-invitations?”

“What is the probability that Prof. Niles would get so many (m+1 of them)
students?”

“What is the probability that the Nevada Diner would get so many (m + 1
of them) diners?”
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“What is the probability that Niles, IL would get so many (m + 1 of them)
cases of acute lymphocitic leukemia?”

Even though this is the wrong question (whose answer would make Nilini,
Prof. Niles and the Nevada Diner’s successes go to their heads, and would
make the real-estate prices in Niles, IL, plummet), because it is so tiny, and
seemingly extremely unlikely to be “due to chance”, let’s answer this question
anyway.

The a priori probability of Nilini getting m + 1 or more prom-invitations,
using the Poisson Approximation is:

e−R(

∞∑
i=m+1

Ri

i!
) = e−R(eR −

m∑
i=0

Ri

i!
) = 1− e−R

m∑
i=0

Ri

i!
,

indeed very small if m is considerably larger than R.

But a priori we don’t know who would be the “lucky champion” (or the
unlucky town), the right question to ask is:

The Right Question: Given r, n, and m, compute (if possible exactly, but
at least approximately):

P (r, n,m) := the probability that every box got ≤ m balls.

Getting the Right Answer to the Right Question, as Fast as Possible

In [2], Ewens and Wilf present a beautiful, fast (O(mn)), algorithm for com-
puting the exact value of P (r, n,m), that employs a method that is described
in the Nijenhuis-Wilf classic [3] (but that has been around for a long time,
and rediscovered several times, e.g. by one of us ([5]), and before that by
J.C.P. Miller, and according to Don Knuth the method goes back to Euler.
At any rate, [2] does not claim novelty for the method, only for applying it
to the present problem).

The specific real-life examples given in [2] were:

1. (Niles, IL): r = 14400, n = 9000, (so R = 8/5), m = 7. Using their method,
they got (in less than one second!) the value

P (14400, 9000, 7) = 0.0953959131671303999971555481626 . . . ,

meaning that the probability that every town in the US, of the size of Niles,
IL, would get no more than 7 cases is less than ten percent. So with probability
0.904604086832869600002844451837, some town (of the same size, assuming,
artificially that the US has been divided into towns of that size) somewhere,
in the US, would get at least eight cases. There is (most probably) nothing
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wrong with their water, or their air-quality, the only one that they may blame
is Lady Luck!

For comparison, the a priori probability that Niles, IL would get 8 or more
cases is roughly:

1− e−1.6
7∑

i=0

1.6i

i!
= 0.00026044 . . . ,

a real reason for (unjustified!) concern.

2. (Churchill County, NV): r = 8000, n = 12000, (so R = 2/3), m = 11.
Using their method, they got (in less than one second!) the value

P (8000, 12000, 11) = 0.999999895529647647310726013392 . . . ,

so it is extremely likely that every district got at most 11 cases, and the
probability that some district got 12 or more cases is indeed small, namely

1− P (8000, 12000, 11) = 0.104470 · 10−6 ,

so these people should indeed panic.

For comparison, the a priori probability that Churchill County, NV, would
get 12 or more cases is roughly:

1− e−2/3
11∑
i=0

(2/3)i

i!
= .870586315 · 10−11 ,

in that case people would have been right to be concerned, but for the wrong
reason!

The Maple package BallsInBoxes

This article is accompanied by the Maple package BallsInBoxes available
from:
http://www.math.rutgers.edu/~zeilberg/tokhniot/BallsInBoxes .

Lots of sample input and output files can be gotten from:
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/bib.html

.

How to Compute P (r, n,m) Exactly?

Easy! As Ewens and Wilf point out in [2], and Herb Wilf mentioned in his
talk, there is an obvious, explicit, “answer”
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P (r, n,m) =
1

nr

∑ r!

r1!r2! . . . rn!
,

where the sum ranges over the set of n-tuples of integers

A(r, n,m) := {(r1, r2, . . . , rn) | 0 ≤ r1, . . . , rn ≤ m , r1+r2+· · ·+rn = r} .

So “all” we need, in order to get the exact answer, is to construct the set
A(r, n,m) and add-up all the multinomial coefficients.

Of course, there is a better way. As it is well-known (see [2]), and easy to see,
writing

P (r, n,m) =
r!

nr

∑
(r1,...,rn)∈A(r,n,m)

1

r1!r2! . . . rn!
,

the
∑

is the coefficient of xr in the expansion of(
m∑
i=0

xi

i!

)n

,

so all we need is to go to Maple, and type (once r, n, andm have been assigned
numerical values)

r!/n**r*coeff(add(x**i/i!,i=0..m)**n,x,r); .

This works well for small n and r, but, please, don’t even try to apply it
to the first case of [2], (r = 14400, n = 9000,m = 7), Maple would crash!

Ewens and Wilf’s brilliant idea was to use the Euler-Miller-(Nijenhuis-Wilf)-
Zeilberger-. . . “quick” method for expanding a power of a polynomial, and
get an answer in less than a second!

[We implemented this method in Procedure Prnm(r,n,m) of BallsInBoxes].

While their method indeed takes less than a second (in Maple) for r =
14400, n = 9000 (and 7 ≤ m ≤ 12), it takes quite a bit longer for
r = 144000, n = 90000, and we are willing to bet that for r = 108, n = 108 it
would be hopeless to get an exact answer, even with this fast algorithm.

But why this obsession with exact answers? Hello, this is appliedmathematics,
and the epidemiological data is, of course, approximate to begin with, and we
make lots of unrealistic assumptions (e.g. that the US is divided into 9000
towns, each exactly the size of Niles, IL.) . All we need to know is, “are that
many diseases likely to be due to pure chance, or is it a cause for concern?”,
Yes or No?, Ja oder Nein?, Oui ou Non?, Ken o Lo?.

Enumeration Digression
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It would be nice to get a more compact (than the huge multisum above)
(symbolic) “answer”, or “formula”, in terms of the symbols r, n and m. This
seems to be hopeless. But fixing, positive integers a, b and m, one can ask for
a “formula” (or whatever), in n, for the quantity P (an, bn,m) that can be
written as B(a, b,m;n)/(an)bn where

B(a, b,m;n) := (an)!
∑

(r1,...,rn)∈A(an,bn;m)

1

r1!r2! . . . rn!
,

the cardinality of the natural combinatorial set consisting of placing an balls
in bn boxes in such a way that no box receives more than m balls. Equiva-
lently, all words in a bn-letter alphabet, of length an, where no letter occurs
more than m times. For example, when a = b = m = 1, we have the deep
theorem:

B(1, 1, 1;n) = n! .

Equivalently, e(n) = B(1, 1, 1;n) is a solution of the linear recurrence equation
with polynomial coefficients

e(n+ 1)− (n+ 1)e(n) = 0 , (n ≥ 0) ,

subject to the initial condition e(0) = 1.

It turns out that, thanks to the not-as-famous-as-it-should-be Almkvist-
Zeilberger algorithm [1] (an important component of the deservedly famous
Wilf-Zeilberger Algorithmic Proof Theory), one can find similar recurrences
(albeit of higher order, so it is no longer “closed-form”, in n) for the sequences
B(a, b,m;n) for any fixed triple of positive integers, a, b,m.

(See Procedures Recabm and RacabmV in the Maple package BallsInBoxes).

Indeed, since B(a, b,m;n) is (an)! times the coefficient of xan in(
m∑
i=0

xi

i!

)bn

,

it can be expressed, (thanks to Cauchy), as

(an)!

2πi

∮
|z|=1

(∑m
i=0

zi

i!

)bn
zan+1

dz, (Cauchy)

and this is game for the Almkvist-Zeilberger algorithm, that has been incor-
porated into BallsInBoxes. See the web-book

http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes2
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for these recurrences for 1 ≤ a, b ≤ 3 and 1 ≤ m ≤ 6.

Asymptotics

Once the first-named author of the present article computed a recurrence, it
can go on, thanks to the Birkhoff-Trzcinski method ([4, 6]), to get very good
asymptotics! So now we can get a very precise asymptotic formula (in n) (to
any desired order!) for P (an, bn,m), that turns out to be very good for large,
and even not-so-large n, and for any desired a, b,m. Procedure Asyabm in our
Maple package BallsInBoxes finds such asymptotic formulas. See

http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes1

for asymptotic formulas, derived by combining Almkvist-Zeilberger with
AsyRec (also included in BallsInBoxes in order to make the latter self-
contained.)

This works for every m, and every a and b, in principle! In practice, as m
gets larger than 10, the recurrences become very high order, and take a very
long time to derive.

But as long as m ≤ 8 and even (in fact, especially) when n is very large, this
method is much faster than the method of [2] (O(mn) with large n is not
that small!). Granted, it does not give you an exact answer, but neither do
they (in spite of their claim, see below!) .

But let’s be pragmatic and forget about our purity and obsession with “exact”
answers. Since we know from “general nonsense” that the desired probability

C(a, b,m;n) := P (an, bn,m) (= B(a, b,m;n)/(an)bn)

behaves asymptotically as

C(a, b,m;n) ≍ µn(c0 +O(1/n)) ,

for some numbers µ and c0, all we have to do is crank out (e.g.) the 200-
th and 201-th term and estimate µ to be C(a, b,m; 201)/C(a, b,m; 200), and
then estimate c0 to be C(a, b,m; 200)/µ200. Using Least Squares one can do
even better, and also estimate higher order asymptotics (but we don’t bother,
enough is enough!).

Procedure AsyabmEmpir in our Maple package BallsInBoxes uses this method,
and gets very good results!

For example, for the Niles, IL, example, in order to get estimates for
P (14400, 9000,m), typing
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evalf(subs(n=1800,AsyabmEmpir(8,5,m,200,n)));

for m = 7, 8, 9, 10, 11, 12 yields (almost instantaneously)

m = 7: 0.09540287131 . . . (the exact value being: 0.095395913167 . . . ) ,

m = 8: 0.664971462304 . . . (the exact value being: 0.66495441 . . . ) ,

m = 9: 0.9378712268719 . . . (the exact value being: 0.93786433 . . . ) ,

m = 10: 0.990845139 . . . (the exact value being: 0.9908433 . . . ) ,

m = 11: 0.998789295 . . . (the exact value being: 0.99878892861 . . . ) .

The advantage of the present approach is that we can handle very large n,
for example, with the same effort we can compute

evalf(subs(n=180000,AsyabmEmpir(8,5,m,200,n)))

getting, for example, that P (1440000, 900000, 11) is very close to 0.88554890636027.
The method used in [2] (i.e. typing Prnm(1440000,900000,11); in BallsInBoxes)
would take forever!

Caveat Emptor

There is another problem with the O(mn) method described in [2]. Sure
enough, it works well for the examples given there, namely P (14400, 9000,m)
for 6 ≤ m ≤ 12 and P (8000, 12000,m) for 4 ≤ m ≤ 8.

This is corroborated by our implementation of that method, (Procedure
Prnm(r,n,m) in
BallsInBoxes).

Typing (once BallsInBoxes has been read onto a Maple session):

t0:=time(): Prnm(14400,9000,9) , time()-t0;

returns

0.937864339305858219725360911354, 0.884

that tells you the desired value (we set Digits to be 30), and that it took
0.884 seconds to compute that value.

But now try:

t0:=time(): Prnm(1000,100,15), time()-t0;
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and get in 0.108 seconds (real fast!)

−0.728465229161818857989128673465 · 1050 .

“Something is rotten in the State of Denmark!” We learned in kindergarten
that a probability has to be between 0 and 1, so a negative probability, espe-
cially one with 50 decimal digits, is a bit fishy. Of course, the problem is that
[2]’s “exact” result is not really exact, as it uses floating-point arithmetic.

Big deal, since we work in Maple, let’s increase the system variable Digits

(the number of digits used in floating-point calculations), and type the fol-
lowing line:

evalf(Prnm(1000,100,15),80);

getting 5.71860506564981..., a little bit better! (the probability is now less
than six, and at least it is positive!), but still nonsense.

Digits:=83 still gives you nonsense, and it only starts to “behave” at
Digits:=90.

Now let’s multiply the inputs, r and n by 10, and take m = 22 and try
to evaluate P (10000, 1000, 22). Even Digits:=250 still gives nonsense! Only
Digits:=310 gives you something reasonable and (hopefully) correct.

The way to overcome this problem is to keep upping Digits until you get close
answers with both Digits and, say, Digits+100. This is implemented in Pro-
cedure PrnmReliable(r,n,m,k) in BallsInBoxes, if one desires an accuracy
of k decimal digits. This is reliable indeed, but not exact, and not rigorous,
since it uses numerical heuristics. The exact answer is a rational number, that
is implemented in Procedure PrnmExact(r,n,m) of BallsInBoxes.

The Cost of Exactness

If you type

t0:=time():PrnmExact(14400,9000,7): time()-t0;

you would get in 42 seconds (no longer that fast!) a rational number whose
numerator and denominator are exact integers with 54207 digits.

See

http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes7a

for the outputs (and timings) of PrnmExact(14400,9000,m); for m between
6 and 12 and see
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http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes7b

for the outputs (and timings) of PrnmExact(8000,12000,m); for m between
4 and 8. No longer fast at all! (2535 and 248 seconds respectively).

Let’s Keep It Simple: An Ode to the Poisson Approximation

At the end of [2], the authors state:

“ A Poisson Approximation is also possible but it may be inaccurate, partic-
ularly around the tails of the distribution. Our exact method is fast and does
not suffer from any of those problems.”

Being curious, we tried it out, to see if it is indeed so bad. Surprise, it is
terrific! But let’s first review the Poisson approximation as we understand it.

The probability of any particular box (of the n boxes) getting ≤ m ball is,
roughly, using the Poisson approximation (R := r/n):

e−R
m∑
i=0

Ri

i!
.

Of course the n events are not independent, but let’s pretend that they are.
The probability that every box got ≤ m balls is approximated by

Q(r, n,m) :=

(
e−R

m∑
i=0

Ri

i!

)n

.

[Q(r, n,m) is implemented by procedure PrnmPA(r,n,m) in BallsInBoxes.
It is as fast as lightning!]

Ewens and Wilf are very right when they claim that P (r, n,m) and Q(r, n,m)
are very far apart around the “tail” of the distribution, but who cares about
the tail? Definitely not a scientist and even not an applied mathematician.
It turns out, empirically (and we did extensive numerical testing, see Proce-
dure HowGoodPA1(R0,N0,Incr,M0,m,eps) in BallsInBoxes), that whenever
P (r, n,m) is not extremely small, it is very well approximated by Q(r, n,m),
and using the latter (it is so much faster!) gives very good approximations,
and enables one to construct the “center” of the probability distribution (i.e.
ignoring the tails) very accurately. See

http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes4 ,

and

http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes5 ,
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for comparisons (and timings!, the Poisson Approximation wins!) .

In particular, the estimates for the expectation, standard deviation, and even
the higher moments match extremely well!

Another (empirical!) proof of the fitness of the Poisson Approximation can
be seen in:

http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes1

where the (rigorous!) asymptotic formulas derived, via AsyRec, from the re-
currences obtained via the Almkvist-Zeilberger algorithm are very close to
those predicted by the Poisson Approximation (except for very small m, cor-
responding to the “tail”).

The Full Probability Distribution of the Random Variable “Maxi-
mum Number of Balls in the Same Box”

It would be useful, for given positive integers a and b, to know how the
probability distribution “maximum number of balls in the same box when
throwing an balls into bn boxes” behaves. One can “empirically” construct
(without arbitrarily improbable tail) the distribution of the random variable
“maximum number of balls in the same box” when an balls are uniformly-
at-random placed in bn boxes (Let’s call it Xn(a, b), and Xn for short) using

Pr(Xn = m) = P (an, bn,m)− P (an, bn,m− 1) .

First, and foremost, what is the expectation, µn, of this random variable?
Second, what is the standard deviation, σn?, skewness?, kurtosis?, and it
would be even nice to know higher α-coefficients (alias moments of Zn :=
(Xn − µn)/σn), as asymptotic formulas in n.

For the expectation, µn, Procedure AveFormula(a,b,n,d,L,k) uses the more
accurate “empirical approach” and Maple’s built-in Least-Squares command,
to obtain the following empirical (symbolic!) estimates for the expectation.

a = 1, b = 1: evalf(AveFormula(1,1,n,1,300,1000,10),10); yields that

µn is roughly 2.293850526 + (0.4735983525) · log n

a = 2, b = 1: evalf(AveFormula(2,1,n,1,300,1000,10),10); yields that

µn is roughly 3.963420618 + (0.5834252496) · log n

a = 1, b = 2: evalf(AveFormula(1,2,n,1,300,1000,10),10); yields that

µn is roughly 1.640094145 + (0.3873602232) · log n.
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Note that for a = 1, b = 1, the approximation to µn can be written
2.293850526 + (1.090500507) · log10 n, so a “rule-of-thumb” estimate for the
expectation when n balls are thrown into n boxes is a bit more than 2 plus
the number of (decimal) digits.

Procedure NuskhaPA1(R,n,K,d) uses the Poisson Approximation to guess
polynomials in logn of degree d fitting the average, standard deviation, and
higher moments, as asymptotic expressions in n, for nR balls thrown into n
boxes, where R is now any (numeric) rational number. Even d = 1 seems to
give a fairly good fit, so they all seem to be (roughly) linear in logn.

Procedure SmallestmPA

Procedure SmallestmPA(r,n,conf) gives you the smallest m for which, with
confidence conf, you can deduce that the high value ofm is not due to chance
(using the Poisson Approximation). For example

SmallestmPA(14400,9000,.99);

yields 10, meaning that if a town the size of Niles, IL got 10 or more cases,
then with probability > 0.99 it is not just bad luck. If you want to be %99.99-
sure of being a victim of the environment rather than of Lady Luck, type:

SmallestmPA(14400,9000,.9999);

and get 13, meaning that if you had 13 cases, then with probability larger
than 0.9999 it is not due to chance.

The Minimum Number of Balls that Landed in the Same Box,
Procedure LargestmPA

An equally interesting, and harder to compute, random variable is the min-
imum number of balls that landed in the same box, but the Poisson Ap-
proximation handles it equally well. Analogous to SmallestmPA, we have, in
BallsInBoxes, Procedure LargestmPA(r,n,conf) that tells you the largest
m for which you can’t blame luck for getting m or less balls.

For example, if there are 10000 students that have to decide between 100
different calculus sections,

LargestmPA(10000,100,.99);

that happens to be 66, tells you that any section that only has 66 students
or less, with probability > 0.99, it is because that professor (or time slot, e.g.
if it is an 8:00am class) is not popular, and you can’t blame bad luck.

LargestmPA(10000,100,.9999);
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that outputs 57, tells you that anyone who only had ≤ 57 students enrolled
is unpopular with probability > %99.99, and can’t blame bad luck.

On the other end, going back to the original problem, SmallestmPA(10000,100,.99);
yields 139, telling you that any section for which 139 or more students signed
up is probably (with prob. > 0.99) due to the popularity of that section, while
SmallestmPA(10000,100,.9999); yields 151.

Final Comments

1. One can possibly (using the saddle-point method) get asymptotic formulas
from the contour integral (Cauchy), but this is not our cup-of-tea, so we
leave it to other people.

2. Another “back-of-the-envelope” “Poisson Approximation” is to argue that
since the probability of any individual box getting strictly more than m balls
is roughly (recall that R = r/n)

e−R
∞∑

i=m+1

Ri

i!
= e−R(eR −

m∑
i=0

Ri

i!
) = 1− e−R

m∑
i=0

Ri

i!
,

by the linearity of expectation, the expected number of lucky (or unlucky if
the balls are diseases) boxes exceeding m balls is roughly

n

(
1− e−R

m∑
i=0

Ri

i!

)
.

In the case of Niles, IL, the expected number of towns that would get 8 or
more cases is:

9000

(
1− e−1.6

7∑
i=0

(1.6)i

i!

)
= 2.343961376410372 ,

so it is not at all surprising that at least one town got as many as 8 cases.
On the other hand, in the other example r = 8000, n = 12000,m = 12, the
expected number of unfortunate counties is:

12000

(
1− e−(2/3)

12∑
i=0

(2/3)i

i!

)
= 0.533706802 · 10−8 ,

so it is indeed a reason for concern.

Conclusion

We completely agree with Ewens and Wilf that simulation takes way too
long, and is not that accurate, and that their method is far superior to it.
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But we strongly disagree with their dismissal of the Poisson Approximation.
In fact, we used their ingenious method to conduct extensive empirical (nu-
merical) testing that established that the Poisson Approximation, that they
dismissed as “inaccurate”, is, as a matter of fact, sufficiently accurate, and
far more reliable, in addition to being yet-much-faster! It is much safer to use
the Poisson Approximation than to use their “exact” method (in floating-
point arithmetic), and when one uses truly exact calculations, in rational
arithmetic, their “fast” method becomes anything but.

Even when the floating-point problem is addressed by using multiple precision
(PrnmReliable discussed above), their fast algorithm becomes slow for very
large r and n, while the Poisson Approximation is almost instantaneous even
for very large r and n, and any m.

So while we believe that the algorithm in [2] is not as useful as the Poisson
Approximation, it sure was meta-useful, since it enabled us to conduct exten-
sive numerical testing that showed, once and for all, that it is far less useful
then the latter.

Additional evidence comes from our own symbolic approach (fully rigorous
for m ≤ 9 and semi-rigorous for higher values of m), that establishes the
adequacy of the Poisson Approximation for symbolic n.

Finally, as we have already pointed out, since the data that one gets in
applications is always approximate to begin with, insisting on an “exact”
answer, even when it is easy to compute, is unnecessary.

Coda: But We, Enumerators, Do Care About Exact Results!

Our point, in this article, was that for applications to statistics, the Poisson
Approximation suffices. But we are not statisticians. We are enumerators,
and we do like exact results! The approach of [2] enables us to know, for
example, in less than one second the exact number of ways that 1001 balls
can be placed in 1001 boxes such that no box received more than 7 balls.
Just type (in BallsInBoxes)

(1001**1001)*PrnmExact(1001,1001,7);

and get a beautiful exact integer with 3004 digits!

Typing

(1001**1001)*PrnmPA(1001,1001,7);

will give you something fairly close (the ratio being 0.9997852 . . . ) but for a
pure enumerator, this is very unsatisfactory. So long live exact answers!, but
not in statistics.
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